Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Строительные металлические конструкции 3 курс.doc
Скачиваний:
1906
Добавлен:
13.02.2016
Размер:
23.76 Mб
Скачать

11.5. Купола

Купола относятся к пространственному типу покрытий. Они являются распорными системами. Различают 3 типа конструктивных схем куполов: ребристые, ребристо - кольцевые и сетчатые.

Ребристые купола образуются из радиально расположенных ребер - полуарок (рис. 11. 8 а). В основании купола ребра опираются на стены здания либо на криволинейный или многоугольный в плане кольцевой элемент, воспринимающий распор X. В вершине купола ребра опираются на центральное кольцо. При расчете на осесимметричные нагрузки можно расчленять на плоские арки. При шарнирном сопряжении ребер с верхним кольцом получаются трехшарнирные арки. При жесткой заделке ребер в верхнем опорном кольце рассчитываются двухшарнирные арки с условной затяжкой, роль которой выполняет нижнее опорное кольцо.

Ребра выполняются сплошными или решетчатыми и соединяются между собой ими. Для обеспечения устойчивости ребер из плоскости между прогонами устраивают связи.

Ребристо-кольцевые купола (рис. 11.8. б) отличаются от ребристых тем, что прогоны включаются совместно с ребрами на восприятие распора. Прогоны в этом случае представляют собой ряд горизонтальных колец, расположенных в разных уровнях и испытывающих растягивающие усилия. В таких куполах, заметнее чем, в ребристых, проявляется эффект пространственности. При асимметричной нагрузке купола можно рассчитывать, расчленяя их на плоские арки с условными затяжками в уровнях кольцевых прогонов.

Сетчатые купола образуются из ребристо-кольцевых включением на восприятие диагональных связей между ребрами и прогонами (рис.11.8.в). Сетчатые купола опираются в отдельных точках или связываются упруго с опорными кольцами.

При больших пролетах можно приближенно рассчитывать такие купола как безмоментные оболочки. Найденные в оболочке меридиальные и кольцевые усилия раскладывают на направления стержней, сходящихся в узле. По конструкции стержневого набора сетчатые купола могут быть односетчатыми и 2-х сетчатыми. Пролеты куполов могут достигать 400 м.

Для однотипности элементов сетчатого купола, при построении их геометрии используются правильные и полуправильные многогранники, вписанные в сферу, например, икосаэдр, имеющий 20 одинаковых граней, 80-гранник, дающий два типа граней или 320-гранник с пятью типами граней.

11.6. Структурные и перекрестно-балочные системы покрытий

В настоящее время большое распространение получили пространственные решетчатые покрытия регулярной структуры, образующиеся на основе многократно повторяющихся элементов. Структурные конструкции используются и в междуэтажных перекрытиях, стенах, и для покрытий зданий и сооружений.

По принципу образования пространственные решетчатые покрытия можно разделить:

- перекрестно-балочные системы, образуемые пересечением ферм 2-х или 3-х направлений (рис. 11.9.а);

- структурные конструкции, которые набираются из элементарных "кристаллов", тетраэдров (рис.11.9.в), пентаэдров (рис. 11.9.б), гептаэдров (рис. 11.9.д) и т.д.

Во всех случаях стержневой набор образует верхнюю и нижнюю поясные сетки, соединенные между собой решеткой. Поэтому такие системы являются двух сетчатыми. Такие покрытия обычно выполняются без прогонов, т.к. размеры ячеек верхнего пояса небольшие.

Пространственные решетчатые системы отличаются архитектурной выразительностью. В зависимости от формы поверхности перекрестные и структурные конструкции образуют диски, своды, купола, складчатые системы и др. Некоторые из этих типов показаны с. 11.9. Структурные конструкции обладают повышенной жесткостью по сравнению с плоскостными системами. Поэтому они имеют меньшую строительную высоту, а следовательно более экономичны. Кроме того, они хорошо работают на сосредоточенные нагрузки, поэтому их можно применять для производственных зданий с подвесными кранами.

Преимуществом структурных конструкций являются их возможность произвольного расположения опор в узлах нижней или верхней поясных сеток. Опорами могут быть стены, отдельно стоящие колонны, что позволяет принимать любые архитектурно - планировочные решения.

Поставка конструкций на строительную площадку может осуществляться в виде: пакетов отдельных стержней, плоских секций, пространственных модулей-пирамид, вложенных при транспортировании одна в другую в виде плотного штабеля.

Монтаж конструкций можно производить индустриальными методами, т.е. применять укрупнительную сборку всего покрытия на уровне земли с последующим подъемом готового блока на проектную отметку кранами или домкратами.

Конструктивные формы структурных плит отличаются большим разнообразием из-за применения различных типов стержневой решетки, профилей стержней и типов узловых соединений.

Наиболее распространен тип структур с поясными сетками из квадратных ячеек (рис.11.9.б). Такая сетка применяется в производственных зданиях прямоугольной в плане формы. Для увеличения жесткости ортогональных структур на кручение поясные сетки устраиваются с дополнительными диагоналями (рис.11.9.г). Для покрытий общественных зданий сложной конфигурации в плане применяются структуры с поясными сетками из ней 3-х направлений, образуемые из тетраэдров (рис.11.9.в) или гептаэдров (рис.11.9.д).

Стержни структурных покрытий изготавливают из круглых труб или прокатных профилей (уголков, швеллеров, двутавров). Для производственных зданий выгоднее структуры из прокатных профилей несмотря на то, что они на 15...25% тяжелее структур из труб.

На массу и стоимость структурных конструкций существенно влияют узловые соединения, на узлы расходуется до 15...20% металла.

Различают два вида узловых сопряжений в структурах: сварные и болтовые. Конструкция узлов показана на рис. 11.10.

Расчет структурных конструкций осуществляется точными и приближенными методами. При точном расчете стержневая плита рассматривается как пространственная шарнирно-стержневая система и рассчитывается на ЭВМ по существующим программам.

При расчете приближенным способом стержневую систему заменяют сплошной плитой эквивалентной жесткости. По справочным таблицам определяют как для сплошной плиты изгибающие моменты и поперечные силы в заданных сечениях. Затем переходят от сплошной плиты к стержневой системе. Для этого распределенные изгибающий момент Mpl и поперечную силу Qpi собирают с плиты шириной, равной размеру ячейки поясной сетки S (рис. 11.11а) и прикладывают в виде сосредоточенных усилий Mpl*S и Qpi*S в узлы кристалла (рис. 11.11.б).

Усилия в поясах получают заменой момента Mpl*S парой сил с плечом, равным высоте структуры h, а усилия в раскосах - из условия равновесия сил, приложенных к данному узлу на вертикальную ось.

Ниже приводятся формулы для определения усилий в поясах Nb и раскосах Nd для структур различных типов. Для структуры из пентаэдров без дополнительных диагоналей в ней поясной сетке (см. рис. 11.9.б)

Nb = Mpl*S /h;

Nd = - 0,5*Qpi*S Qx /sin

где h - высота структуры, - угол наклона раскосов к горизонтальной плоскости.

Для структуры из пентаэдров с дополнительными диагоналями в верхней поясной сетке (рис.11.9.г)

Nb = 1,1 Mpl*S /h;

Nd = - 0,55*Qpi*S Qx /sin

Для структуры с треугольными ячейками верхней и нижней поясных сеток (рис.11.9.в)

Nb = 0,578Mpl*S /h;

Nd = - 0,5*Qpi*S Qx /sin

Приближенный расчет усилий в структурах обеспечивает точность до 15% и обычно применяется при вариантном проектировании. Основными параметрами при выборе конструктивной схемы являются: типы ячеек поясных сеток и положение верхней поясной сетки по отношению к нижней, схема расположения опор и очертание плиты на участке, между опорами, конструктивная высота плиты и размеры поясных ячеек.

Рекомендуется принимать высоту структурных плит 1/15...1/20 пролета при стержнях и 1/20...1/25 пролета при профильном прокате. Ячейки принимаются в пределах 1/7…1/15 пролета плиты. Стержневые плиты ограничиваются пролетами 60...80 м, однако могут иметь и большие значения.