Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общая геология_Н.В.Короновский.pdf
Скачиваний:
154
Добавлен:
20.02.2016
Размер:
23.92 Mб
Скачать

подобран исследователями. Именно в этом метеорите были обнаружены мельчайшие - 2 10-6 - 10 10-6 см цианобактерии, располагающиеся внутри глобул, состоящих из сульфидов и сульфатов железа и окислов, возраст которых определен в 3,6 млрд. лет. Т.е. это несомненно марсианские породы, т.к. изотопный состав кислорода и углерода глобул, идентичен таковым в марсианских газах, определенных в породах Марса на его поверхности космическим аппаратом “Викинг” в 1976 г.

1.2.6. Происхождение Солнечной системы Образование Солнца и планет является одним из фундаментальных вопросов

естествознания. Джордано Бруно в ХVI веке был первым, высказавшим мысль о том, что многие звезды, как и Солнце, окружены планетами и эти системы то возникают, то умирают. Только в ХVIII веке благодаря трудам выдающихся ученых Иммануила Канта и Пьера Лапласа сформировалась наука о происхождении всех небесных тел - космогония. Они показали, что т.к. движение всех планет подчинено одному закону, то и образование их должно также происходить по единому закону. Именно они высказали идею о газопылевой туманности, первоначально вращавшейся вокруг Солнца, из которой впоследствии и сформировались планеты. С тех пор планетная космогония ушла далеко вперед и современные представления о формировании Солнечной системы выглядят следующим образом (рис. 1.13).

Рис. 1.12. Формирование Солнечной системы: 1 – взрыв сверхновой звезды порождает ударные волны, воздействующие на газопылевое облако (ГПО); 2 – ГПО начинает фрагментироваться и сплющиваться, закручиваясь при этом; 3 – первичная Солнечная небула; 4

образование Солнца и гигантских, богатых газом планет – Юпитера и Сатурна; 5 – ионизированный газ – Солнечный ветер сдувает газ из внутренней зоны системы и с мелких планетезималей; 6 – образование внутренних планет из планетезималей в течение 100 млн лет и формирование «облаков» Оорта, состоящих из комет

Звезды типа Солнца - желтые карлики, формируются при сжатии газопылевых облаков, масса которых должна быть не меньше 105 массы Солнца. Пробразом такого облака может служить туманность Ориона, великолепные фотографии которой сделаны космическим телескопом им. Хаббла. Почему это облако начало сжиматься? По одной из гипотез на него мог повлиять взрыв близкой сверхновой звезды, ударные волны от которого и заставили облако сжиматься и вращаться. По другой - газопылевое облако, в силу своего участия в общем вращении ГМП, начало сжиматься, однако большой момент вращения не допускает дальнейшего сжатия и облако распадается на отдельные сгустки - будущие планеты. Надо отметить, что начальный момент превращения газопылевого облака в протопланетный диск, наименее ясный момент в процессе формирования Солнечной системы.

Как бы то ни было, радиус газопылевого облака должен был быть больше радиуса орбиты девятой планеты - Плутона, равной 40 А.Е. Состав облака характеризовался 99% газа и 1% пылевых частиц размером в микроны. Когда газопылевое облако начало сжиматься и вращаться массы - будущему Солнцу, в дисковидном облаке возникали мощные турбулентные вихри, ударные волны, гравитационные приливы, перемешивающиеся газ облака, которое, благодаря этому оставалось однородным. Время, необходимое для образования диска из облака оценивается всего лишь в 1000 лет, газ при этом охлаждается и образуются более крупные пылевые частицы, конденсируясь из газа, т.к. давление в облаке очень небольшое. В центральной части диска, благодаря быстрому коллапсу, зажглось Солнце, а при удалении от него в протопланетном диске температура уменьшалась до десятков градусов на краю диска, что подтверждается конденсацией льда воды за поясом астероидов. Итак, частицы пыли перемещались к центральной плоскости диска и чем крупнее была пылинка, тем быстрее она “падала”. Внешние слои диска теряли газ за счет его нагревания излучением молодого Солнца и мощного потока ионизованной плазмы - солнечного ветра. Формирование пылевого субдиска в центральной части первичного газопылевого диска оценивается всего лишь в 105 лет. Когда плотность пылевых частиц в субдиске достигал некоторого критического значения, диск стал гравитационно неустойчивым и начал распадаться на отдельные сгущения пыли, причем, чем выше была плотность в сгущении, тем оно быстрее увеличивалось в размерах. Плотные сгустки, размером с хороший астероид, сталкиваясь, объединялись и увеличиваясь в размерах, превращались в рой планетезималей, размером до 1 км. Слипание, объединение планетезималей возможно только в случае небольшой скорости, соударения и неровной контактной поверхности, облегчавшей их сцепление. Не

исключено, что в облаке Оорта на краю Солнечной системы сохранились еще допланетные планетезимали, попавшие туда благодаря гравитационным возмущениям со стороны планет-гигантов. Образование планетезималей заняло не более 1 млн. лет, т.е. произошло с космической точки зрения почти мгновенно.

Важнейшим этапом была аккреция собственно планет из роя планетезималей, занявшая уже гораздо больше времени, около 1000 млн.лет. Современное численное моделирование позволяет рассчитывать скорости допланетных тел и распределение их масс. Эти тела двигались по круговым орбитам, сталкиваясь друг с другом, разрушаясь, выбрасывая газ и пыль, но если тело было крупное, оно не разваливалось от ударов, а, наоборот, присоединяло к себе другие частицы и планетезимали. Чем больше было тело, тем оно быстрее росло и вступало в гравитационное взаимодействие с другими телами, изменяя их орбиты. Именно в этих, наиболее крупных телах и сосредотачивалась основная масса вещества допланетного диска, образуя зародыши планет. Одно из основных условий роста тел - это низкие скорости их столкновения, не превышающие 1 м/сек. Образования группы внутренних планет происходило за счет соударений каменных планетезтмалей, в отсутствии легких газов, которые удалялись солнечным ветром. Но планеты-гиганты, вернее их силикатные ядра, достигали уже размеров 2-3 массы Земли и сумели удержать водородно-гелиевую газовую оболочку. Когда Юпитер на стадии быстрой аккреции достиг внушительных размеров - примерно 50 масс Земли, он присоединил к себе весь газ из окружающего пространства и далее аккреция пошла уже намного медленнее, т.к. газ оказался исчерпанным.

Сатурн, который расположен дальше от Солнца, рос медленнее и по составу отличается от Солнца сильнее, чем Юпитер. Точно также, двухступенчато, росли и остальные планеты - гиганты. Сначала формировались ядра, а затем происходила аккреция газов. Огромные количества энергии, высвобождавшееся при аккреции, нагревало внешние газовые оболочки планет-гигантов до нескольких тысяч градусов. Любопытно, что когда формировались спутники Юпитера, то ближе к нему расположенные, особенно Ио, и, в меньшей степени, Европа состояли из каменного вещества, т.к. температура на этих орбитах была выше температуры конденсации водяного пара. Дальние спутники - Ганимед и Каллисто, в большей своей части состоят уже из льда воды, т.к. температура была низкой, поэтому в составе далеких спутников планет-гигантов, да и самих наиболее удаленных планет, распространены конденсаты метана, этана, аммиака и воды.

Спутники планет образуются по той же принципиальной схеме, что и сами планеты. Во время аккреции планеты часть планетезималей захватывается силой ее

гравитации на околопланетную орбиту. Так у планеты формируется доспутниковый диск, из которого путем аккреции образуются спутники.

Для геологов, конечно, первостепенным является вопрос о формировании Земли и планет земной группы. Мы знаем, что в настоящее время Земля состоит из ряда сферических оболочек, в том числе твердого внутреннего ядра, жидкого - внешнего и твердой мантии с тонкой оболочкой - твердой же земной коры. Иными словами, Земля дифференцирована по свойствам и составу вещества. Когда и как произошла эта дифференциация?

На этот счет существуют две, наиболее распространенные точки зрения. Ранняя из них полагала, что первоначальная Земля, сформировавшаяся сразу после аккреции из планетезималей, состоящих из никелистого железа и силикатов, была однородна и только потом подверглась дифференциации на железо-никелевое ядро и силикатную мантию. Эта гипотеза получила название гомогенной аккреции.

Более поздняя гипотеза гетерогенной аккреции заключается в том, что сначала аккумулировались наиболее тугоплавкие планетезимали, состоящие из железа и никеля и только потом в аккрецию вступило силикатное вещество, слагающее сейчас мантию Земли от уровня 2900 км. Эта точка зрения сейчас, пожалуй, наиболее популярна, хотя и здесь возникает вопрос о выделении внешнего ядра, имеющего свойства жидкости. Возникло ли оно после формирования твердого внутреннего ядра или внешнее и внутреннее ядра выделялись в процессе дифференциации? Но этот вопрос однозначного ответа не существует, но предположение отдается второму варианту. Процесс аккреции, столкновение планетезималей размером до 1000 км, сопровождался большим выделением энергии, с сильным прогревом формирующейся планеты, ее дегазацией, т.е. выделением летучих компонентов, содержащихся в падавших планетезималях. Большая часть летучих при этом безвозвратно терялась в межпланетном пространстве, о чем свидетельствует сравнение составов летучих в метеоритах и породах Земли. Процесс становления нашей планеты по современным данным длился около 500 млн. лет и проходил в 3 фазы аккреции. В течение первой и главной фазы Земдя сформировалась по радиусу на 93-95% и эта фаза закончилась к рубежу 4,4 – 4,5 млрд. лет, т.е. длилась около 100 млн. лет. Вторая фаза, ознаменовавшаяся завершением роста длилась тоже около 200 млн. лет. Наконец, третья фаза, продолжительностью до 400 млн. лет (3,8-3,9 млрд. лет окончание) сопровождалась мощнейшей метеоритной бомбардировкой, такой же как и на Луне.

Какой была первичная, только что родившаяся Земля? Была она горячей или холодной? Для геологов решение этого вопроса имеет принципиальное значение. Даже в начале ХХ века ученые говорили о первичной “огненно-жидкой” Земле. Однако, этот

взгляд полностью противоречил современной геологической жизни планеты. Если бы Земля изначально была расплавленной, она давно бы превратилась в мертвую планету. Следовательно, предпочтение нужно отдать юной, не очень холодной, но и не расплавленной ранней Земле.

Факторов нагрева планеты было много. Это и гравитационная энергия; и соударение планетезималей; и падение очень крупных метеоритов, при ударе которых повышенная температура распространялась до глубин 1-2 тыс.км. Если же, все-таки, температура превышала точку плавления вещества, то наступала дифференциация - более тяжелые элементы, например, железо, никель, опускались, а легкие, наоборот, всплывали. Но главный вклад в увеличение тепла должен был играть распад радиоактивных элементов - плутония, тория, калия, алюминия, йода. Еще один источник тепла - это твердые приливы, связанные с близким расположением спутника Земли - Луны. Все эти факторы, действуя вместе, могли повысить температуру до точки плавления пород, например, в мантии она могла достигнуть +1500 О С. Но давление на больших глубинах препятствовало плавлению, особенно во внутреннем ядре. Процесс внутренней дифференциации нашей планеты происходил всю ее геологическую историю, продолжается он и сейчас. Однако, уже 3,5-3,7 млрд.лет назад, при возрасте Земли в 4,6 млрд.лет, у Земли было твердое внутреннее ядро, жидкое внешнее и твердая мантия, т.е. она уже была дифференцирована в современном виде. Об этом говорит намагниченность таких древних горных пород, а, как известно, магнитное поле обусловлено взаимодействием жидкого внешнего ядра и твердого внешнего.

Процесс расслоения, дифференциации недр происходил на всех планетах, но на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии. Атмосфера и гидросфера Земли возникли в результате конденсации газов, выделявшихся на ранней стадии развития планеты.

1.2.7. Строение Луны Луна - это единственный спутник Земли, всегда обращенный к ней одной и той же

стороной и вращающейся вокруг Земли по законам Кеплера - вблизи апогея медленнее, вблизи перигея - быстрее. Однако, вокруг оси Луна вращается равномерно и время ее обращения вокруг оси равняется сидерическому (звездному) месяцу. Двойная система Земля-Луна сказывается на Земле и Луне. Известно, что влияние Луны вызывает приливы на Земле, но т.к. Земля в 81 раз массивнее Луны, то и приливы на Луне намного сильнее. Полный оборот вокруг Земли Луна совершает за 27 суток 7 часов 43 минуты. Это время является сидерическим (звездным) месяцем Луны, т.е. периодом движения Луны

относительно звезд. Центр масс двойной системы Земля-Луна находится в 4750 км от центра Земли внутри планеты. Поверхность Луны, в том числе и ее обратная, невидимая сторона прекрасно изучена с помощью космических аппаратов, луноходов и американскими астронавтами, неоднократно бывавшими на поверхности Луны и собравшими несколько тонн лунных пород. Среднее удаление Луны от Земли 384000 км,

диаметр Луны 3476 км, масса 7,33 10 25, средняя плотность 3,33 г/ см 3. Атмосфера на Луне отсутствует из-за малых ее размеров, температура на экваторе днем достигает +130ОС, а ночью150ОС. Поверхность Луны подразделяется на моря и материки. Первые занимают 17% поверхности, вторые - 83%.. Материки, более светлые участки поверхности Луны - это относительно древние, брекчированные породы, с большим количеством плагиоклаза - анортита. Материки покрыты большим количеством метеоритных кратеров, образовавшихся при интенсивной бомбардировке 4,0-3,9 млрд.лет назад.

Рис.1.13. Строение, состояние и состав лунных недр (по А.Т.Базилевскому и др., 1981)

Более темные моря представляют собой огромные покровы базальтовых лав, излившихся 3,9-3,0 млрд.лет назад, т.е. они более молодые и метеоритных кратеров на них меньше. Поверхность Луны покрыта рыхлым грунтом - реголитом, образовавшимся при ударах метеоритов и раздроблении пород. Изучение Луны дало геологам доказательство усиленной метеоритной атаке Земли в этот же интервал времени, 3,9-4,0 млрд.лет назад.

Сила тяжести на Луне 1/6 земной и у нее есть очень слабое магнитное поле неизвестного происхождения. Измерения силы тяжести показали скопление плотных масс - масконов под лунными морями. На Луне выделяется кора, мощностью до 60 км и скоростью сейсмических волн Vр - 7,0-7,7 км/ сек; литосфера или верхняя и средняя мантия до глубины 1000 км; нижняя мантия (астеносфера), частично расплавленная, как и ядро, с глубины 1500 до 1740 км (рис. 1.14). Через них не проходят поперечные сейсмические волны. Приливные лунотрясения, выявленные с помощью сейсмографов, установленных на поверхности Луны экспедициями “Апполонов” с 1969 г., приурочены к средней мантии. Луна ежегодно удаляется от Земли примерно на 2 см, увеличивая свой момент количества движения.

Существует 3 главные гипотезы о происхождении Луны. По одной из них Луна отделилась от Земли, по другой - Луна была захвачена уже “готовой” силами притяжения Земли, по третьей, разработанной в 60-е годы российской ученой Е.Л.Рускол, Луна образовалась вместе с Землей из роя планетезималей. Недавно ученые университета Беркли в Калифорнии (США), после длительных компьютерных расчетов показали, что Луна образовалась в результате столкновения Земли по касательной с космическим телом размером с Марс. Выброшенные в космос обломки стали вращаться по круговой орбите, слипаясь в шаровидное тело – Луну. Было это 4,5 млрд. лет назад. Любая из гипотез должна объяснить отличия в химическом составе лунных пород от земных и различия в плотности небесных тел.

В заключение этого раздела необходимо подчеркнуть, что сравнительная планетология дает чрезвычайно много для понимания ранней истории Земли, скрытой от геологов последующими процессами.