Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
для ИПК / ЛЕКЦИИ / РАЗДЕЛ_1 / 03_ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ.doc
Скачиваний:
10
Добавлен:
05.03.2016
Размер:
310.78 Кб
Скачать

2.3.1. Формулировка третьего закона Ньютона.

ЗАКОН !

Две взаимодействующие материальные точки действуют друг на друга с силами одной природы, которые численно равны и направлены в противоположные стороны вдоль прямой, соединяющие эти точки “.

Если - сила, действующая на i-тую материальную точку со стороны k-той материальной точки, а - сила, действующая на k-тую материальную точку со стороны i-той, то согласно третьему закону Ньютона:

(2.6)

Подчеркнем, что силы в третьем законе Ньютона:

  • приложены к разным материальным точкам;

  • в любой системе тел действуют парами;

  • имеют одну природу.

  • Сам третий закон применим только в рамках классической механики.

Силы и (приложенные к разным материальным точкам) могут взаимно уравновешиваться, только если эти точки принадлежат к одному телу.

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

Второй и третий законы Ньютона справедливы только для инерциальных систем отсчета!!!

2.3.2. Силы инерции.

В неинерциальных системах отсчета возникают силы инерции, которые вызываются не взаимодействием тел, а ускоренным движением системы отсчета. Поэтому они не подчиняются третьему закону Ньютона, так как, если на какое-либо тело действует сила инерции, то нельзя указать со стороны какого тела она действует и, соответственно, не существует противодействующей силы. (Действие есть, а противодействия нет!).

2.4. Преобразования Галилея.

Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно, т.е. не привязав себя к другой инерциальной системе отсчета.

В основу классической механики положен принцип независимости пространства и времени. В качестве аксиом принимается абсолютность промежутков времени и длин:

1) промежуток времени между какими-либо двумя событиями одинаков во всех системах отсчёта;

2) размеры тела не зависят от скорости его движения относительно системы отсчёта.

Преобразованиями Галилея называются преобразования коорди­нат и времени, применяемые в классической механике при переходе от одной инерциальной системы отсчёта (x, y, z, t) к другой (x’, y’,z’, t’), которая движется относительно системы прямолинейно и поступательно с постоянной скоростью.

Рисунок 2.1

Если сходные оси декартовых координат инерциальных систем отсчёта и проведены попарно параллельно друг другу, и если в начальный момент времени начала координатисовпадают друг с другом (рис. 2.1), то преобразования Галилея имеют вид:

и

(2.7)

или:

и

(2.8)

где: x,y,z и ,,- координаты точки М в системах отсчётав момент времениt и в момент времени;и- радиусы – векторы точки М в тех же системах отсчёта;,,- проекции скоростисистемына оси координат системы.

Обычно оси координат проводят так, что система движется вдоль оси ОХ в положительном направлении (рис. 2.2.). В этом случае преобразования Галилея имеют более простой вид:

(2.9)

Рисунок 2.2.

Из преобразований Галилея вытекает следующий закон преобразования скорости произвольной точки М (рис. 2.1.) при переходе от одной инерциальной системы к другой,

(2.10)

где скорость точки М - в системе отсчета, и- в системе.

Соответственно преобразуются и проекции скорости на сходственные оси координат:

(2.11)

Ускорение точки М в системах отсчёта

) и )

(2.12)

одинаковы.

(2.13)

Итак, ускорение материальной точки не зависит от выбора инерциальной системы отсчёта, т. е. инвариантно относительно преобразований Галилея.

Силы взаимодействия между материальными точками зависят только от их взаимного расположения и от скорости движения друг относительно друга.

Взаимное расположение каких-либо двух точек 2 и 1, характеризуется вектором, равным разности радиусов- векторов этих точек. В системе вектором, а в системе- вектором.

Согласно аксиоме 2 следует, что расстояния между точками 1 и 2 в системах одинаковы:

(2.14)

или:

(2.15)

Скорость движения точки 2 относительно точки 1 (относительная скорость) равна разности скоростей этих точек

В системе :

В системе :

(2.16)

Из преобразований Галилея следует, что:

(2.17)

Итак, взаимное расположение и скорость относительного движения двух любых материальных точек не зависят от выбора инерциальной системы отсчёта, т. е. они инвариантны относительно преобразований Галилея. Соответственно инвариантны и силы, действующие на материальную точку:

(2.18)

Уравнения, выражающие законы Ньютона, инвариантны относительно преобразований Галилея, т. е. не изменяют свой вид при преобразовании координат и времени от одной инерциальной системы отсчёта к другой:

и - в системе

и - в системе

(2.19)

где и- масса рассматриваемой материальной точки, одинаковая во всех системах отсчёта.

Т.о., в классической механике справедлив механический принцип относительности (принцип относительности Галилея): законы механики одинаковы во всех инерциальных системах отсчёта.

Это значит, что в разных инерциальных системах отсчёта все механические процессы при одних и тех же условиях протекают одинаково.

Следовательно, с помощью любых механических экспериментов, проведённых в замкнутой системе тел, нельзя установить, покоится эта система или движется равномерно и прямолинейно (относительно какой-либо инерциальной системы отсчёта).

Механический принцип относительности означает, что в классической механике все инерциальные системы отсчёта совершенно равноправны.

Записанные соотношения справедливы в случае классической механики, т.е. u<< c.

Для скоростей, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца.

Соседние файлы в папке РАЗДЕЛ_1