Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
srs_4_Enkm.doc
Скачиваний:
15
Добавлен:
05.03.2016
Размер:
155.14 Кб
Скачать

Первый постулат Бора: постулат стационарных состояний

Атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определённая энергия En. В стационарном состоянии атом не излучает.

Второй постулат Бора: правило частот

Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний: hvkn = Ek - En 

Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.

Принцип дополнительности — один из важнейших принципов квантовой механики, сформулированный в 1927 году Нильсом Бором. Согласно этому принципу, для полного описания квантовомеханических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых даёт исчерпывающую информацию об этих явлениях как о целостных. Например, дополнительными в квантовой механике являются пространственно-временная и энергетически-импульсная картины.

 Динамические и статистические закономерности в природе

Динамические законы приложимы к исследованию движения всех объектов макромира: твердым, жидким и газообразным телам, упругим и деформируемым, к телам переменной массы.

Движение микрочастиц исследуется в квантовой механике, которая показала, что, в противоположность объектам макромира, к объектам микромира законы динамики неприложимы. Было установлено, что при движении одинаковые частицы в одинаковых условиях могут вести себя по-разному. Для описания движения частиц требуется применение вероятностных представлений.

В микромире господствуют статистические законы, которые можно применять только к большим совокупностям, но не к отдельным индивидуумам. Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы.

Свойственные для объектов микромира статистические закономерности, а для объектов макромира динамические закономерности ярко демонстрируют диалектический характер развития природных явлений и процессов. Кроме того, раскрытие статистических и динамических закономерностей демонстрирует диалектическую связь между случайным и необходимым.

При́нцип относи́тельности — фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.[1]

Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к оптике иэлектродинамике.

В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как лоренц-ковариантность (или лоренц-инвариантность)

Принципы симметрии делятся на пространственно-временные (геометрические или внешние) и внутренние, описывающие свойства элементарных частиц. Среди пространственно-временных принципов симметрии можно выделить следующие:

· Сдвиг системы отсчета не меняет физических законов, т.е. все точки пространства равноправны. Это означает однородность пространства.

· Поворот системы отсчета пространственных координат оставляет физические законы неизменными, т.е. все свойства пространства одинаковы по всем направлениям, иными словами пространство изотропно. Например, свойства палки не меняются, если ее переворачивать в воздухе. А вот свойства корабля значительно изменятся, если он перевернется в воде, так как на границе раздела воды и воздуха свойства пространства разные. Таким образом, симметрия пространства означает, что в пространстве действия физических законов нет выделенных точек и направлений, оно однородно.

· Сдвиг во времени не меняет физических законов, т.е. все моменты времени объективно равноправны. Время однородно. Это означает, что можно любой момент времени взять за начало отсчета. Этот принцип означает закон сохранения энергии, который основан на симметрии относительно сдвигов во времени. Период колебаний маятника "ходиков" не изменится, если отсчитать его в полдень или в полночь, т.е. законы физики не зависят от выбора начала отсчета времени.

· Законы природы одинаковы во всех инерциальных системах отсчета. Этот принцип относительности является основным постулатом специальной теории относительности (СТО) Эйнштейна. В соответствии с принципом симметрии можно произвести переход в другую систему отсчета, движущуюся относительно данной системы с постоянной по величине и направлению скорости. Например, можно перейти из вагона поезда в машину, если уравнять их скорости.

· Зеркальная симметрия природы – отражение пространства в зеркале – не меняет физических законов.

· Фундаментальные физические законы не меняются при обращении знака времени. Необратимость, существующая в макромире, имеет статистическое происхождение и связана с неравновесным состоянием Вселенной.

·  Замена всех частиц на античастицы не влияет на физические законы, не меняет характера процессов природы.

При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

  • результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

  • Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

  • Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нетмногочастичных взаимодействий.

  • Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции

При́нцип соотве́тствия — в методологии науки утверждение, что любая новая научная теория при наличии старой, хорошо проверенной теории находится с ней не в полном противоречии, а даёт те же следствия в некотором предельном приближении (частном случае). Например, закон Бойля-Мариотта является частным случаем уравнения состояния идеального газа в приближении постоянной температурыкислоты и основания Аррениуса являются частным случаем кислот и оснований Льюиса и т.п.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]