Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электротехника. Реферат №2 Магнитные цепи, синхронные машины, машины постоянного тока (Maple) / Электротехника. Реферат №2 Магнитные цепи, синхронные машины, машины постоянного тока (Maple).doc
Скачиваний:
605
Добавлен:
08.01.2014
Размер:
991.74 Кб
Скачать

Российский химико-технологический университет имени Д.И. Менделеева

Кафедра электротехники и электроники

Реферат на тему:

Магнитные цепи, синхронные машины, машины постоянного тока

Выполни студент группы П-21

Проверил:

Новикова Ирина Ивановна

Москва 2010

Содержание:

  1. Синхронный генератор

    1. Устройство синхронного генератора

    2. Внешние характеристики синхронного генератора

    3. Регулировочные характеристики синхронного генератора

  2. Синхронный двигатель

    1. Назначение и область применения

    2. Устройство синхронного двигателя с возбуждением от постоянных магнитов

    3. Пуск синхронного двигателя

    4. Угловая и механическая характеристика синхронного двигателя

    5. U-образная характеристика синхронного генератора

  3. Основные понятия о магнитных цепях и методах их расчета

    1. Магнитные силы переменной и постоянной магнитодвижущей силы

    2. Катушка с ферромагнитным сердечником

  4. Генераторы постоянного тока

    1. Классификация генераторов постоянного тока

    2. Характеристики генераторов

      1. Сравнение внешних характеристик генераторов постоянного тока

  5. Двигатели постоянного тока

    1. Устройство, принцип действия

    2. Пуск двигателей постоянного тока

    3. Механические характеристики электродвигателей постоянного тока

    4. Регулирование частоты вращение машин постоянного тока

Синхронный генератор

Электрическим генератором называется любое устройство, предназначенное для преобразования механической энергии в электрическую. Это может быть паровая машина, водяная или ветряная установка особой конструкции, атомный реактор или двигатель внутреннего сгорания. В настоящее время в промышленности используется множество различных электрогенераторов, которые различают по типу первичного двигателя (турбинные, гидравлические и дизельные генераторы). Генераторы различаются по виду выхода электрического тока, (генераторы постоянного и переменного тока). Генераторы также подразделяются по способу возбуждения — магнитному, внешнему или самовозбуждению, которое бывает последовательным, параллельным и смешанным.

Устройство синхронного генератора

Синхронный генератор состоит из нескольких частей:

  1. Статор

Статор синхронного генератора, как и других машин переменного тока, состоит из сердечника, набранного из листов электротехнической стали, в пазах которого укладывается обмотка переменного тока, и станины — чугунного или сварного из листовой стали кожуха.

2) Роторы синхронных машин по конструкции делятся на два типа:

а) явнополюсные (т. е. с явно выраженными полюсами) и

б) неявнополюсные (т. е. с неявно выраженными полюсами).

На изображении показаны схемы устройства синхронных генераторов с явнополюсным и неявнополюсным роторами.

Та или иная конструкция ротора диктуется соображениями механической прочности. У современных генераторов, вращающихся от быстроходных двигателей (паровая турбина), окружная скорость ротора может достигать 100—160 м/сек (в некоторых случаях 170 м/сек). Поэтому быстроходные генераторы имеют неявнополюсный ротор. Скорость вращения быстроходных генераторов составляет 3000 об/мин и 1500 об/мин.

К ободу ротора прикрепляются полюсы, на которые надеваются катушки возбуждения, соединяемые последовательно между собой. Концы обмотки возбуждения присоединяются к двум кольцам, укрепленным на валу ротора. На кольца накладываются щетки, к которым присоединяется источник постоянного напряжения. Обычно постоянный ток для возбуждения ротора дает генератор постоянного тока, сидящий на одном валу с ротором и называемый возбудителем. Мощность возбудителя равна 0,25—1% от номинальной мощности синхронного генератора. Номинальные напряжения возбудителей 60—350 В.

Схема 3х фазного генератора с самовозбуждением

Основным отличием генератора с самовозбуждением от обычного трехфазного генератора является то что в нем наличествуют селеновые выпрямители, подключенные к обмотке стартера. В первый момент слабое поле остаточного магнетизма вращающегося ротора индуктирует в обмотке статора незначительную переменную э.д.с. Селеновые выпрямители, подключенные к переменному напряжению, дают постоянный ток, который усиливает поле ротора, и напряжение генератора увеличивается.

Внешние характеристики синхронного генератора

На рис. 1 показаны внешние естественные характеристики трехфазного синхронного генератора, иллюстрирующие зависимость напряжения U г на его зажимах от тока обмотки статора Ir при заданном коэффициенте мощности приемников соs φ = const, неизменном токе возбуждения в обмотке ротора IB = const и постоянной частоте вращения ротора, чему отвечает неизменная частота переменного тока f=const. Эти характеристики могут исходить как из общей точки (0, Егx), отвечающей режиму холостого хода, так и пересекаться в точке (Iг ном, U г ном), соответствующей номинальной нагрузке.

Рис. 1.1. Внешние характеристики трехфазного синхронного генератора при изменении нагрузки с заданным коэффициентом мощности нагрузки: а - от режима холостого хода до номинальной; б - от номинальной до режима холостого хода.

Первые характеристики позволяют определить изменение напряжения генератора при увеличении нагрузки от режима холостого хода до номинального тока, а вторые - при снижении нагрузки от номинальной до режима холостого хода.

Основной естественной внешней характеристикой синхронного генератора считают кривую Uг (Iг), полученную при симметричном режиме, коэффициенте мощности приемников cos φ = 0,8 и φ > 0.

Для поддержания напряжения синхронного генератора неизменным при переменной нагрузке приходится регулировать ток возбуждения IB в обмотке ротора по закону, определяемому регулировочными характеристиками, крутизна которых зависит от характера нагрузки и ее коэффициента мощности (рис. 6.6). Так, при увеличивающемся токе нагрузки, отстающем по фазе от напряжения на угол φ > 0, возникает размагничивающее действие реакции якоря и соответствующая регулировочная характеристика поднимается, а при возрастающем токе нагрузки, опережающем по фазе напряжение на угол φ < 0, она снижается вследствие подмагничивающего действия реакции якоря.