Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биология. Митоз, мейоз, размножение, жизнь.docx
Скачиваний:
132
Добавлен:
14.03.2016
Размер:
199.92 Кб
Скачать
  1. Мейоз как процесс формирования гаплоидных клеток. Фазы мейоза, их характеристика и значение.

Центральным событием гаметогенеза является особая форма клеточного

деления — мейоз. В отличие от широко распространенного митоза, сохраняющего в

клетках постоянное диплоидное число хромосом, мейоз приводит к образованию из

диплоидных клеток гаплоидных гамет. При последующем оплодотворении гаметы

формируют организм нового поколения с диплоидным кариотипом (пс + пс ==

2n2c). В этом заключается важнейшее биологическое значение мейоза, который

возник и закрепился в процессе эволюции у всех видов, размножающихся половьм

путем .

Мейоз состоит из двух быстро следующих одно за другим делений,

происходящих в периоде созревания. Удвоение ДНК для этих делений

осуществляется однократно в периоде роста. Второе деление мейоза следует за

первым практически сразу так, что наследственный материал не синтезируется в

промежутке между ними (рис. 5.5).

Первое мейотическое деление называют редукционным, так как оно приводит

к образованию из диплоидных клеток (2п2с) гаплоидных клеток п2с. Такой

результат обеспечивается благодаря особенностям профазы первого деления мейоза.

В профазе I мейоза, так же как в обычном митозе, наблюдается компактная упаковка

генетического материала (спирализация хромосом). Одновременно происходит

событие, отсутствующее в митозе: гомологичные хромосомы конъюгируют друг с

другом, т.е. тесно сближаются соответствующими участками.

В результате конъюгации образуются хромосомные пары, или биваленты,

числом п. Так как каждая хромосома, вступающая в мейоз, состоит из двух

хроматид, то бивалент содержит четыре хроматиды. Формула генетического

материала в профазе I остается 2n4c. К концу профазы хромосомы в бивалентах,

сильно спирализуясь, укорачиваются. Так же как в митозе, в профазе I мейоза

начинается формирование веретена деления, с помощью которого хромосомный

материал будет распределяться между дочерними клетками. Процессы, происходящие в профазе I мейоза и определяющие его результаты,обусловливают более продолжительное течение этой фазы деления по сравнению с митозом и дают возможность выделить несколько стадий в ее пределах .

Лептотена —наиболее ранняя стадия профазы I мейоза, в которой начинается

спирализация хромосом, и они становятся видимыми в микроскоп как длинные и

тонкие нити. Зиготена характеризуется началом конъюгации гомологичных

хромосом, которые объединяются синаптонемальным комплексом в бивалент. Пахитена — стадия, в которой на фоне продолжающейся спирализации

хромосом и их укорочения, между гомологичными хромосомами осуществляется

кроссинговер — перекрест с обменом соответствующими участками. Диплотена

характеризуется возникновением сил отталкивания между гомологичными

хромосомами, которые начинают отдаляться друг от друга в первую очередь в

области центромер, но остаются связанными в областях прошедшего кроссинговера

—хиазмах .Диакинез — завершающая стадия профазы I мейоза, в которой гомологичные

хромосомы удерживаются вместе лишь в отдельных точках хиазм. Биваленты

приобретают причудливую форму колец, крестов, восьмерок и т.д.

Таким образом, несмотря на возникающие между гомологичными

хромосомами силы отталкивания, в профазе I не происходит окончательного

разрушения бивалентов. Особенностью мейоза в овогенезе является наличие

специальной стадии — диктиотены, отсутствующей в сперматогенезе. На этой

стадии, достигаемой у человека еще в эмбриогенезе, хромосомы, приняв особую

морфологическую форму «ламповых щеток», прекращают какие-либо дальнейшие 221

структурные изменения на многие годы. По достижении женским организмом

репродуктивного возраста под влиянием лютеинизирующего гормона гипофиза, как

правило, один овоцит ежемесячно возобновляет мейоз.

В метафазе I мейоза завершается формирование веретена деления. Его нити

прикрепляются к центромерам хромосом, объединенных в биваленты, таким

образом, что от каждой центромеры идет лишь одна нить к одному из полюсов

веретена. В результате нити, связанные с центромерами гомологичных хромосом,

направляясь к разным полюсам, устанавливают бивалентны в плоскости экватора

веретена деления. Стадии диплотены в мейозе кузнечика В анафазе I мейоза ослабляются связи между гомологичными хромосомами в бивалентах и они отходят друг от друга, направляясь к разным полюсам веретена деления. При этом к каждому полюсу отходит гаплоидный набор хромосом, состоящих из двух хроматид. В телофазе I мейоза у полюсов веретена собирается одинарный, гаплоидный

набор хромосом, каждая из них содержит удвоенное количество ДНК.

Формула генетического материала образующихся дочерних клеток

соответствует п2с.

Второе мейотическое (эквационное) деление приводит к образованию клеток,

в которых содержание генетического материала в хромосомах будет

соответствовать их однонитчатой структуре пс (см. рис. 5.5). Это деление протекает,

как митоз, только клетки, вступающие в него, несут гаплоидный набор хромосом. В

процессе такого деления материнские двунитчатые хромосомы, расщепляясь,

образуют дочерние однонитчатые.

Одна из главных задач мейоза — создание клеток с гаплоидным набором

однонитчатых хромосом —достигается благодаря однократной редупликации ДНК

для двух последовательных делений мейоза, а также благодаря образованию в

начале первого мейотического деления пар гомологичных хромосом и дальнейшего

их расхождения в дочерние клетки.

Процессы, протекающие в редукционном делении, обеспечивают также не

менее важное следствие — генетическое разнообразие гамет, образуемых

организмом. К таким процессам относят кроссинговер, расхождение гомологичных

хромосом в разные гаметы и независимое поведение бивалентов в первом

мейотическом делении .

Кроссинговер обеспечивает перекомбинацию отцовских и материнских

аллелей в группах сцепления . Ввиду того что перекрест хромосом

может происходить в разных участках, кроссинговер в каждом отдельном случае

приводит к обмену разным по количеству генетическим материалом. Необходимо

отметить также возможность возникновения нескольких перекрестов между двумя

хроматидами (рис. 5.9) и участия в обмене более чем двух хроматид бивалента (рис.

Хроматидами и участия в перекресте более чем двух хроматид. Отмеченные особенности кроссинговера делают этот процесс эффективным механизмом перекомбинации аллелей.

Расхождение гомологичных хромосом в разные гаметы в случае

гетерозиготности приводит к образованию гамет, различающихся по аллелям

отдельных генов .Случайное расположение бивалентов в плоскости экватора веретена деленияи последующее их расхождение в анафазе I мейоза обеспечивают перекомбинацию родительских групп сцепления в гаплоидном наборе гамет.