Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат КСЕ.docx
Скачиваний:
14
Добавлен:
17.03.2016
Размер:
63.85 Кб
Скачать

Научный метод и его разработки в трудах н.Бора

Нильс Хе́нрик Дави́д Бор  — датский физик-теоретик и общественный деятель, один из создателей современной физики. Лауреат Нобелевской премии по физике (1922). Член Датского королевского общества (1917) и его президент с 1939 года. Был членом более чем 20 академий наук мира, в том числе иностранным почётным членом Академии наук СССР (1929; членом-корреспондентом — с 1924).

Бор известен как создатель первой квантовой теории атома и активный участник разработки основ квантовой механики. Он также внёс значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой.

Несмотря на большую занятость административными делами, Бор продолжал развивать свою теорию, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия, связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 году, когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора (в частности, для гармонического осциллятора); дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений. Впоследствии Бор дал чёткую формулировку принципу соответствия:

…"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних.

Принцип соответствия сыграл огромную роль и при построении последовательной квантовой механики. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки.

В 1921—1923 годах в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева, представив схему заполнения электронных орбит (оболочек, согласно современной терминологии). Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 году нового элемента гафния Дирком Костером и Георгом Хевеши, работавшими в то время в Копенгагене. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию, а не к редкоземельным элементам, как думали ранее.

Идея дополнительности, развитая в начале 1927 года во время отпуска в Норвегии, отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Данные измерений объектов микромира, полученные при помощи различных экспериментальных установок, в условиях, когда взаимодействие между измерительным прибором и объектом составляет неотъемлемую часть процесса измерений, находятся в своеобразном дополнительном отношении друг к другу. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса.

Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики и анализа процесса измерения характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы (её координата, импульс, энергия и др.) вовсе не присущи частице самой по себе. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение (такой классический объект условно называется измерительным прибором). Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности.