Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В.И. Попков - Механика жидкости и газа. Основные понятия, формулы и определения.doc
Скачиваний:
105
Добавлен:
18.03.2016
Размер:
5.06 Mб
Скачать

Термодинамические параметры (параметры состояния) - температура, плотность, давление, объем, удельное электрическое сопротивление и другие физические величины:

- однозначно определяющие термодинамическое состояние системы;

- не учитывающие молекулярное строение тел; - описывающие их макроскопическое строение.

Термодинамические потенциалы – функции определённого набора термодинамических параметров (температуры , объёма , давления энтропии и др.), характеризующих состояние макроскопической термодинамической системы, позволяющие найти все термодинамические характеристики системы как функции этих параметров. К потенциалам термодинамическим относятся внутренняя энергия (изохорно-изоэнтропийный потенциал), энтальпия (изобарно-изоэнтропийный потенциал), Гельмгольца энергия (изохорно-изотермический потенциал), Гиббса энергия (изобарно-изотермический потенциал). Все термодинамические потенциалы связаны между собой соотношениями: Зная термодинамические потенциалы как функции указанных параметров, по любому из них с помощью дифференцирования по его параметрам можно найти все остальные параметры, характеризующие систему:

;

Термодинамический процесс - всякое изменение, происходящее в термодинамической системе и связанное с изменением хотя бы одного ее параметра состояния.

Термодинамическое равновесие термодина-мической системы (тепловое равновесие) – состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При термодинамическом равновесии в системе прекращаются все необратимые процессы, связанные с диссипацией энергии: теплопроводность, диффузия и др. В состоянии термодинамического равновесия макроскопические параметры системы с течением времени не меняются. При этом внутри равновесной системы продолжаются микроскопические процессы: изменяются положения молекул и их скорости при столкновениях. В состоянии термодинамического равновесия энтропия системы максимальна.

Термодинамическое состояние – равновесное макроскопическое состояние термодинамической системы, которое фиксируется заданием параметров состояния, представляющих собой измеряемые макроскопическими приборами средние величины определенного набора характеристик системы. Конкретный набор этих параметров определяется тем, каким способом рассматриваемая равновесная система выделяется из среды окружающих её тел и других систем.

Техническая атмосфера – внесистемная единица давления: равна 1 кгс/см2 = 9,80665 Н/см2.

1 ат = 98066,5 Па.

Техническая атмосфера – внесистемная единица давления: равна 1 кгс/см2 = 9,80665 Н/см2.

1ат = 98066,5 Па.

Толщина вытеснения δ * – величина, используемая в современной теории пограничного слоя для характеристики его толщины, которая вычисляется более точно, чем физическая толщина пограничного слоя δ:

δ * = ,

где - скорость жидкости в сечении пограничного слоя, - скорость внешнего потока.

Толщина вытеснения представляет собой отклонение линий тока вязкой жидкости от линий тока идеальной жидкости, которое вызвано образованием пограничного слоя.

Толщина потери импульса δ ** – величина, характеризующая толщину пограничного слоя, определяется уравнением:

δ ** =

где - скорость жидкости в сечении пограничного слоя, - скорость внешнего потока.

Траектория – кривая, которую описывает радиус – вектор r = r(t) координат жидкой частицы с течением времени. Уравнение траектории можно записать в координатной форме: Принимая во внимание, что скоростьжидкой частицы направлена по касатетельной к траектории, элементарное перемещение жидкой частицыdr за время dt равно dr = cdt. Поэтому уравнение траектории можно представить в следующем виде: где– проекцииdr на оси координат, а – проекции вектора скоростиc на оси координат. При установившееся течении жидкости траектории совпадают с линиями тока.

Трубка Вентури (расходомер Вентури) – устройство для замера расхода или скорости жидкостей и газов в трубопроводах. Представляет собой плавное сужение на трубопроводе, где скорость возрастает, а давление соответственно уменьшается. За сужением трубопровод снова плавно расширяется, образуя диффузор, где происходит обратный переход кинетической энергии потока в энергию давления. Обозначим через идиаметр, давление и среднюю скорость соответственно во входном 1 и в самом узком 2 сечениях трубки Вентури. Тогда для несжимаемой жидкости плотностьюразность давлений определяется соотношениемПо измеренной разности давлений и размерам трубки Вентури из последнего равенства можно найти среднюю скорость потока в сечении 1, а следовательно, и расход, где– площадь поперечного сечения трубопровода,– коэффициент расхода трубки Вентури. Трубки Вентури применяют для измерения расхода жидкостей и газов в трубопроводах.

Трубка Пито – прибор для измерения динамического (полного) давления текущей жидкости, представляющий собой Г-образно изогнутую трубку, отверстие которой расположено перпендикулярно линиям тока жидкости, а противоположное колено ориентировано вертикально. Полное давление реализуется при изоэнтропическом торможении потока до нулевой скорости. Высота столба жидкости в вертикальном колене прямо пропорциональна динамическому напору.

Трубка Пито Прандтля – комбинированная трубка для измерения полного (динамического) и статическогодавлений в потоке. От трубки Пито отличается наличием отверстий на боковой поверхности трубки для измерения статического давления в потокеЗнаяи, можно вычислить скоростьпотока в данной точке на основании уравнения Бернулли:где– плотность жидкости.

Трубка тока – поверхность, образованная линиями тока, проходящими через все точки замкнутого контура, не являющегося линией тока, внутри движущейся жидкости. Касательные к линиям тока совпадают с направлением скоростей движения частиц жидкости, находящихся на этих линиях. При неустановившемся движении жидкости линии тока меняются от момента к моменту, поэтому трубка тока тоже меняет свою форму. При установившемся движении жидкости линии тока совпадают с траекториями частиц и остаются неизменными; в этом случае трубка тока сходна с трубкой с твердыми стенками, внутри которой происходит течение жидкости с постоянным расходом через сечение трубки.