Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел №1.doc
Скачиваний:
689
Добавлен:
29.03.2016
Размер:
934.91 Кб
Скачать

1.1.2 Классификация взрывных процессов

Все быстропротекающие взрывные процессы подразделяются на горение и взрыв. Характерным признаком горения является зависимость скорости химического превращения вещества от внешнего давления. Рост последнего вызывает существенное возрастание скорости горения.

Для того чтобы горючие вещества могли производить значительную работу, их заключают в ограниченный объём, добиваясь направленного истечения продуктов горения. Такой подход применяется в метательных системах (пулевых перфораторах) и системах, производящих работу против гидростатического давления для направленной деформации узлов механических устройств (взрывных пакеров).

В скважинах при сжигании зарядов на большой глубине инерционность столба жидкости обеспечивает интенсивное воздействие раскалённых газов высокого давления на продуктивные пласты через фильтры или перфорационные каналы.

Взрыв от горения отличается не только количественными характеристиками и независимостью скорости химической реакции от внешних условий, но является совершенно иным физическим процессом. И, прежде всего, это отличие связано с возникновением при взрыве между частицами продуктов реакции специфического взаимодействия, которое обеспечивает тепло – массоперенос в продуктах реакции в сторону большего давления, то есть в сторону фронта реакции. Таким образом, на движущемся фронте реакции постоянно происходит концентрация выделяющейся энергии. Такая концентрация энергии достигает огромных величин и является главной причиной сверхзвуковых скоростей химического превращения и возникновения локальных давлений в несколько тысяч МПа.

Взрывной процесс, распространяющийся с постоянной и максимально возможной для данного вещества скоростью называется детонацией. Скорость детонации для каждого вещества является константой и одной из важнейших его характеристик. Все взрывные процессы, происходящие с меньшей скоростью являются нестационарными и в конечном счёте затухают.

Детонация газовых смесей отличается тем, что объём газообразных продуктов может не претерпевать существенных изменений или быть меньше объёма исходной смеси. Условно процесс взрыва газовой смеси можно разделить на две стадии. На первой стадии из – за специфического взаимодействия между частицами продуктов реакции тепло - массоперенос в продуктах осуществляется в сторону большего давления (в сторону фронта реакции), что делает возможным само распространение взрывного превращения по газовой смеси. На второй стадии возможны два процесса: простое расширение разогретых продуктов взрыва или изменение направления массопереноса продуктов реакции за счёт изменения характера специфического взаимодействия между частицами продуктов. В последнем случае за зоной сжатия в окружающей среде возникнет зона глубокого вакуума.

1.1.3 Классификация взрывчатых веществ

Взрывчатые вещества и взрывчатые системы в соответствии с основными областями их применения разбиваются на четыре группы:

1 - инициирующие ВВ;

2 - бризантные ВВ;

3 - метательные ВВ или пороха;

4 - пиротехнические составы.

Инициирующие взрывчатые вещества. Отличаются низкой работоспособностью, но высокой чувствительностью к тепловым и механическим воздействиям, под действием которых в них развивается детонация. Период нарастания скорости детонации до максимального значения у инициирующих взрывчатых веществ очень мал и поэтому даже малые заряды могут применяться в качестве инициаторов взрывных процессов для возбуждения детонации в основных зарядах взрывных герметичных патронов, капсюлей – детонаторов, устройств инициирования и других взрывных устройств.

Важнейшими представителями этой группы взрывчатых веществ являются:

1.Соли тяжёлых металлов гремучей кислоты. Из них наиболее широко применяемая – гремучая ртуть Hg( ONC)2 .

2.Соли азотистоводородной кислоты или азиды. Наиболее широкое применение получил азид свинца – PbN6.

3.Соли тяжёлых металлов стифниновой кислоты. Важнейшим представителем этого ряда является стифнат или тринитрорезорцинат свинца (ТНРС) - C6 H(NO2 )3 O2 Pb  H2O.

4.Кабиды тяжёлых металлов или ацетилениды, из которых наиболее известный ацетиленид серебра Ag 2 C2 .

Используются также инициирующие смеси, состоящие из гремучей ртути, хлората кальция и трехсернистой сурьмы.

Все инициирующие вещества относят к первичным взрывчатым веществам.

Бризантные взрывчатые вещества. Отличаются высокой работоспособностью и применяются в торпедах, кумулятивных зарядах, кумулятивных труборезах, сейсмических зарядах и других устройствах для использования в скважинах. Детонация их вызывается достаточно большими внешними воздействиями и, как правило, для этого используют инициирующие вещества. Поэтому бризантные вещества называют вторичными.

Основным видом их взрывчатого превращения является детонация, но при возбуждении взрыва период нарастания скорости процесса до максимума у них значительно больше чем у первичных.

Важнейшими представителями взрывчатых соединений этой группы являются:

1.Нитраты или сложные эфиры азотной кислоты. Среди них нитроглицерин (глицеринтринитрат) C3H5(ONO2)3, тэн (пентаэритриттетранитрат) – C( CH2 ONO2 )4 , нитраты целлюлозы С24 H 29O9( ONO2 )11 .

2.Нитросоединения. Наиболее широкое применение получили нитросоединения ароматического ряда, преимущественно тринитропроизводные. К ним относятся:

- тротил (тринитротолуол) C6 H2 (NO2)3 CH3

- пикриновая кислота (тринитрофенол) C6 H2 (NO2)3 OH,

Из неароматических нитросоединений необходимо отметить широко применяющийся во взрывных скважинных устройствах гексоген ( триметилентринитрамин) C3H6O6N6, и тетранитрометан С(NO2)4

3.Взрывчатые смеси. К ним относятся аммониты, динамиты, сплавы тротила с гексогеном.

Метательные взрывчатые вещества или пороха. Основным видом взрывчатого превращения их является быстрое горение.

Они подразделяются на две группы:

1. пороха – механические смеси;

2. пороха бездымные или нитроцеллюлозные пороха.

К первой группе относится дымный порох, состоящий из калийной селитры(75%), древесного угля (15%) и серы (10%).

Пороха нитроцеллюлозные, в зависимости от природы растворителя, применяемого для желатинирования (застудневания) их основного компонента – нитроцеллюлозы, подразделяются на четыре группы.

1.Пороха на летучем растворителе или пироксилиновые пороха, содержащие в своём составе пироксилина до 98%, спирто-эфирный растворитель, дифениламин и влагу;

2.Пороха на труднолетучем растворителе или баллиститы, в которых растворителем пироксилина служит нитроглицерин, нитродигликоль и т.п. вещества. Баллиститы изготовляются на основе так называемого растворимого пироксилина, содержат 40 % нитроглицерина, в котором этот вид пироксилина полностью растворяется, до 15% других добавок.

3.Пороха на смешанном растворителе или кордиты изготовляются на основе так называемого нерастворимого пироксилина. Они содержат до 60 % нитроглицерина и в качестве добавочного растворителя до 1,5% ацетона, а также некоторые другие добавки.

4.Пороха на нелетучем растворителе в которых для желатинирования пироксилина служат такие ВВ, как тротил, динитротолуол и другие.