Скачиваний:
180
Добавлен:
31.03.2016
Размер:
1.52 Mб
Скачать

5.3.5. Регулирующий клапан

В качестве клапана выбран регулирующий клапан РК ЗАО «РУСТ».

Регулирующие клапаны предназначены для уп­равления жидкими и газообразными потоками нефти, нефтепродуктов, газа, пара, воды и других сред, перекачиваемых по трубопроводам. Несмот­ря на то что конструкции клапанов довольно разно­образны, все их можно разделить на три типа: ре­гулирующие, запорные и запорно-регулирующие. Клапаны первого типа предназначены для непре­рывного изменения расхода регулируемой среды от самого маленького (клапан полностью закрыт) до самого большого (клапан полностью открыт). Если клапан осуществляет только дискретное регу­лирование (открыт/закрыт), то такой клапан приня­то называть запорным. При этом, если перемеще­ние из одного состояния в другое осуществляется быстро (меньше 2 с.), такой запорный клапан на­зывают еще отсечным.

Как у регулирующих, так и у запорных клапанов возможны небольшие протечки регулируемой сре­ды при закрытом положении клапана. Величины этих протечек регламентируются соответствующи­ми стандартами. При этом протечки у запорных клапанов значительно меньше, чем у регулирую­щих. Если протечки у регулирующего клапана уда­ется снизить до уровня допустимых протечек за­порного клапана, то такой клапан называют запорно-регулирующим.

Все клапаны построены по модульному принци­пу и содержат три основных модуля: корпус, дрос­сельный узел и привод клапана.

Корпус клапана (проходной или угловой) выпол­няется из углеродистой, хладостойкой или корро­зионно-стойкой стали. Стандартное соединение с трубопроводом фланцевое. Возможно иное испол­нение присоединительных мест (под приварку или муфтовое).

Клапан может поставляться с пневматическим, ручным или электрическим приводом. Пневмати­ческий привод можно комплектовать ручными дуб­лерами (верхним или боковым) и дополнительны­ми приборами (фильтром-редуктором, электро-пневмоклапаном, концевыми выключателями, по­зиционерами). Все пневмоприводы имеют воз­вратные пружины, позволяющие автоматически за­крыть (или открыть) клапан при отключении давле­ния питания.

Таким образом, клапаны с корпусами одного вида могут принципиально отличаться друг от дру­га только конструкцией дроссельного узла.

Конечно, для практики важны все элементы кла­панов, но только дроссельные узлы чаще всего яв­ляются камнем преткновения ремонтных служб на всех заводах: то в них возникает вибрация, то они не закрываются, то их заклинивает или разъедают эрозия и абразив. А всех этих бед можно избежать за счет правильного подбора конструкции дрос­сельного узла, его параметров и материалов.

Универсальных решений на все случаи жизни сегодня нет. Однако из известных подходов к кон­струкциям дроссельных узлов наиболее перспек­тивной, на наш взгляд, является идея выполнения дроссельного узла в виде отдельного блока (рис. 5.12), который вставляется в корпус клапана (1) на про­кладках (2; 3; 4) и фиксируется крышкой (5) корпу­са. Такая конструкция дроссельного узла часто на­зывается клеточной или клетковой, т.к. основным ее элементом является перфорированная втулка (6), в которой перемещается подвижный элемент дроссельного узла - плунжер (7). Перемещение плунжера осуществляется с помощью штока (8) клапана, который выведен наружу через подпружи­ненные V-образные фторопластовые кольца в крышке корпуса клапана и соединяется с каким-либо исполнительным механизмом (пневматичес­ким, ручным, электрическим и т.д.).

Рис. 5.12. Регулирующий клапан с клетковым дроссельным узлом

Втулки изготавливаются из коррозионно-стой­ких сталей аустенитного или аустенитно-ферритного классов. Для повышения стойкости поверхно­сти втулок к задирам и разрушению от кавитации их внутренняя поверхность может наплавляться различными стеллитами. В ряде случаев втулки из­готавливаются из дисперсионно-твердеющих сплавов, которые сами обладают повышенной твердостью и, как следствие, повышенной износо­стойкостью и сопротивляемостью задирам. Плун­жера и седла дроссельного узла также изготавли­ваются из коррозионно-стойких сталей и их по­верхности наплавляются стеллитом.

Для клапанов с малыми проходами и рассчитан­ными на большие перепады давления возможно из­готовление седла и плунжера целиком из стеллита.

Изменяя форму и размеры втулки, диаметр седла клапана, вид и форму плунжера, а также кон­струкцию опоры, центрирующую плунжер при его поступательном движении, можно получить боль­шое разнообразие конструкций дроссельных узлов.

При этом постоянно присутствующая в конст­рукции перфорированная втулка не сужает конст­руктивных возможностей, т.к. она только «органи­зует» фиксацию седла, дает дополнительную опору плунжеру, может служить делителем потока и т.д., а весь дроссельный узел всегда остается отдель­ным блоком. Это очень важно, т.к. такая конструк­ция обладает целым рядом достоинств:

- возможностью снятия дроссельного узла для ремонта или замены без снятия всего клапана с трубопровода;

- возможностью прецизионной сборки дроссельного узла в целом при его изготовлении или восстановительном ремонте;

- возможностью изготовления дроссельного узла из более коррозионно- и эрозионно-стойких материалов, чем корпус клапана;

- возможностью использовать с одним корпусом различные по конструкции дроссельные уз­лы, ориентированные на применение в конкретных условиях и с конкретными средами.

На рис. 5.12 представлен классический тип выполнения такого дроссельного узла. Перфорация клетки - количество отверстий, их расположение и форма, определяет величину про­пускной способности клапана и его характеристику регулирования - линейную или равнопроцентную.

Разгруженный по давлению плунжер имеет допол­нительную уплотняющую поверхность в своей верхней части, т.е. в целом дроссельный узел двухседельный, но в отличие от обычных двухседельных клапанов здесь седла не равнозначны. Нижняя кромка плунжера запирает основное сед­ло, а верхнее седло служит только для уменьшения суммарных протечек клапана в закрытом состоя­нии. Такая конструкция дроссельного узла приме­няется только для регулирующих клапанов (тип РК) и стабильно обеспечивает протечки в закрытом со­стоянии менее Kvy. Для клапанов малых Dy воз­можно обеспечение не более Kvy протечек.

Основные технические характеристики клапанов

Таблица 5.4

Параметр

Значение

Диаметр условного прохода (Dy), мм

15; 20; 25; 32; 40; 50; 65; 80; 100; 150; 200

Условное давление (Ру), кгс/см2

16; 25; 40; 63; 100; 160; 250

Температура рабочей среды, °С

от- 196 до 550

Температура окружающей среды в зависимости от климатического исполнения, °С

У - минус 40 ...+70; УХЛ(1) - минус 50.. .+70; УХЛ(2)- минус 60...+70

Уплотнение плунжер - седло

металл-металл; металл-эластомер

Исполнение присоединительных фланцев

ГОСТ 1281 5, DIN, ANSI

Время аварийного закрытия/открытия

менее 10 с., по заказу - не более 2 с.

Пропускная характеристика

линейная или равнопроцентная

Рис. 5.13. Габаритные и присоединительные размеры клапанов

Габаритные и присоединительные размеры клапанов

Таблица 5.5

Dy

Ру, кгс/см2

D1, мм

L1, мм

D2, мм

d, мм

м

12, мм

t среды, С

Н2, мм

НЗ, мм

Н4, мм

Н5, мм

до 225

до 420

Н1, мм

Масса*, кг

Н1, мм

Масса*, кг

80

16-40

195

310

380

85

М80х2

357

210

58

520

65

638

224

258

424

63

210

380

198

74

498

80

100,160

230

212

97

512

104

100

16

215

350

470

85

М80х2

357

255

82

575

91

815

254

410

477

25,40

230

63

250

430

248

106

553

113

100, 160

265

247

140

567

151

150

16

280

480

470

85

М80х2

357

295

165

655

172

815

245

410

477

25,40

300

167

174

63

340

550

273

217

638

225

100, 160

350

288

288

653

296

200

16

335

600

470

85

М80х2

357

352

222

739

232

815

245

410

477

25

360

224

234

40

375

225

235

63

405

650

347

280

734

290

100, 160

430

363

350

750

360

Приводы(исполнительные механизмы) пневматические

Назначение и конструктивные особеннос­ти изделий

Приводы запорно-регулирующих, регулирую­щих и запорных клапанов предназначены для пре­образования управляющего сигнала (пневматичес­кого, электрического или механического) в меха­ническое перемещение штока привода, жестко связанного со штоком клапана. Как правило, наши клапаны поставляются с пневматическими мемб­ранными исполнительными механизмами (МИМ) или ручными приводами. По заказу могут быть ус­тановлены электрические приводы любого изгото­вителя, как отечественного, так и зарубежного.

В мембранных исполнительных механизмах (рис. 5.14, 5.15) давление управляющего воздуха воз­действует на мембрану (1), зажатую по периметру между крышками (2 и 3), и создает усилие, которое уравнивается размещенной в кронштейне (4) при­вода пружиной (5). Таким образом, ход штока (6) привода пропорционален величине управляющего давления. Жесткость и предварительное сжатие пружины определяют диапазон усилий привода и номинальный ход.

Мембранные исполнительные механизмы могут поставляться в двух исполнениях.

Если в отсутствие управляющего пневматичес­кого сигнала пружина выдвигает шток привода в крайнее нижнее положение, такой привод называ­ется нормально закрытым (НЗ, рис. 5.14).

Если в отсутствие управляющего пневматичес­кого сигнала пружина втягивает шток привода в крайнее верхнее положение, такой привод называ­ется нормально открытым (НО, рис. 5.15).

По требованию заказчика мембранные испол­нительные механизмы могут быть укомплектованы ручными дублерами (боковыми или верхними), предназначенными для управления клапаном в от­сутствие давления в сети управляющего воздуха.

Рис. 5.14. Пневмопривод НЗ Рис. 5.15. Пневмопривод НО

Основные технические характеристики мембранных исполнительных механизмов

Таблица 5.6.

Эффективная площадь мембраны, см

250

400

630

1000

Диаметр заделки мембраны, мм

200

250

320

400

Условный ход штока, мм

5; 10; 16

16; 25

25; 40

40; 60

Вид действия

нормально открытый (НО) нормально закрытый (НЗ)

Диапазон температур окружающей среды, °С и относительная среднегодовая влажность, % для климатического исполнения по ГОСТ 15150: -У

-УЩ1) -УХЛ(2) -Т

минус 40... +70; 80% при 15 "С минус 50.. .+70; 80% при 1 5 "С минус 60... +70; 80% при 1 5 "С минус 10.. .+85; 80% при 27 "С

Входной сигнал, МПа (кгс/см2):

- номинальный

- максимальный

0,02...0,1 (0,2...1,0)

0,4 (4)

0,25 (2,5)

Наибольшее усилие, необходимое для вращения на маховике дублера, кгс

12

16

25

32

Масса привода без дополнительных блоков, кг

11

11,5

14

15

Габаритные и присоединительные раз­меры пневматических приводов

Таблица 5.7.

Эффективная площадь мембраны, см2

250

400

630

1000

Вид действия

НО

НЗ

НО

НЗ

НО

НЗ

но

НЗ

Размеры, мм

D

200

250

320

400

D1

250

310

380

470

D

65

85

Н

365

385

475

505

595

630

780

810

Н

25

28

Н1

135

120

170

145

205

165

250

190


Рис. 5.16. Габаритные и

присоединительные размеры

Электропневматический позиционер ЭПП 300

ЭПП 300 является регулятором в следящей си­стеме и предназначен для обеспечения соответст­вия между заданной величиной сигнала управле­ния Iу=4...20 мА и положением пневматического исполнительного механизма поступательного или поворотного действия.

Структурно ЭПП 300 состоит из трех блоков (рис. 5.17): электроники, электропневматического и обратной связи.

Блок электроники является информационной системой на базе микропроцессора и предназна­чен для обработки сигналов управления и обрат­ной связи, питания всех подсистем ЭПП, индика­ции и кнопочного управления его состоянием в мо­мент настройки и работы.

Электропневматический блок представляет со­бой дискретный двухкаскадный двухканальный усилитель-преобразователь с электропьезоклапаном в первом каскаде и мембранным пневмоусилителем - во втором. Объединенный выход вторых каскадов обеспечивает питание исполнительного механизма в режиме нагнетания или сброса.

Блок обратной связи предназначен для выдачи электрического сигнала, пропорционального теку­щему положению исполнительного механизма. Этот блок состоит из поворотного потенциометра и однокаскадного шестеренного редуктора, обеспечивающего использование полного диапазона потенциометра при перемещении исполнительно­го механизма.

Рис. 5.17. Структурная схема ЭПП 300

Рис. 5.18. Электропневмопозиционер ЭПП 300

Конструктивная схема ЭПП 300 представлена на рис. 5.18. В корпусе (1) размещены блоки электрони­ки (2), электропневматики (3) и обратной связи (4). Пневмосоединения осуществляются штуцерами (5), а электросоединения - кабельным вводом (6) и клеммной колодкой. На входном валу редуктора об­ратной связи устанавливается рычаг с подпружи­ненным пальцем, обеспечивающим безлюфтовое соединение с исполнительным механизмом. Креп­ление ЭПП 300 на исполнительном механизме осу­ществляется с помощью кронштейна, который вме­сте с рычагом, пальцем и крепежом входит в ком­плект поставки (комплект заказывается отдельно).

Технические характеристики ЭПП 300

Таблица 5.8.

Рабочий ход: - для поступательного движения ИМ, мм - для поворотного движения ИМ, град.

5.. .130 90

Маркировка взрывобезопасности

0ExiаIICT3

Уровень пылевлагозащиты

IP65

Температура окружающей среды, °С

-40... +70

Относительная влажность воздуха при t=35 °C, %

95

Управляющий сигнал, Iy, мА

4...20

Минимальный ток питания ly™, мА

3,8

Давление воздуха питания, МПа

0,14.. .0,6

Утечка в нейтрали, см3/мин, не более

1

Кабельный ввод,0, мм

8

Пневмосоединения

М12х1

Габаритные размеры корпуса, мм

162x103x83

Материал корпуса

АК7

Материал пневмоблока

Д16Т

Масса, кг

1,1