Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОСЫ И ОТВЕТЫ ДЛЯ ИТОГОВОГО КОНТРОЛЯ ПО МЕДИЦИНСКОЙ БОТАНИКЕ.doc
Скачиваний:
591
Добавлен:
13.06.2016
Размер:
887.81 Кб
Скачать

64. Понятие о жизненных циклах, чередовании поколений. Значение и особенности жизненного цикла водорослей, грибов и высших растений.

У каждого растения полный жизненный цикл развития возможен только при наличии бесполого и полового способов размножения, которые осуществляются в определенной очередности, т. е. происходит чередование, или смена, поколений — бесполого и полового. Особь, образующая органы полового размножения с половыми клетками — гаметами, называется половым поколением, или гаметофитом. Особь, на которой образуются органы бесполого размножения со спорами, называется бесполым поколением, или спорофитом.

В процессе эволюции у разных групп растений гаметофит и спорофит формировались неодинаково, поэтому в растительном мире существует значительное разнообразие и различие в морфологическом строении этих поколений. У многих водорослей оба поколения развиты одинаково, внешне довольно сходны и живут самостоятельно, у некоторых водорослей и большинства высших растений — отличаются или зависят один от другого. Так, у мхов гаметофит морфологически более дифференцирован и развит, поэтому самостоятельнее, а спорофит паразитирует на гаметофите. У папоротников оба поколения живут и питаются самостоятельно, но спорофит значительно превосходит гаметофит по размерам и развитию вегетативных органов. Для семенных растений характерна редукция гаметофита и прогрессирующее развитие спорофита. У цветковых растений чередование поколений почти не выражено из-за значительной редукции гаметофитов: мужского — до двухклеточного пыльцевого зерна, женского — до восьмиядерного зародышевого мешка. Микроскопически малые гаметофиты живут на спорофите — хорошо развитом, крупном растении.

Одновременно с чередованием поколений в цикле развития происходит смена ядерных фаз. Она заключается в следующем. Споры имеют гаплоидный набор хромосом, так как образуются в спорангиях спорофитов из спорогенной ткани в результате редукционного деления. Из споры развивается гаплоидный гаметофит, на котором формируются гаплоидные гаметы. При их слиянии на гаметофите образуется зигота с диплоидным набором хромосом. Гаплоидная фаза ядра сменилась диплоидной фазой. Из зиготы развивается диплоидный спорофит. Затем при образовании спор число хромосом снова уменьшается вдвое и т. д. Имея различное число хромосом, гаметофит и спорофит различаются внешне.

Чередование поколений имеет большое биологическое значение, так как при этом сочетается два способа размножения — бесполое, дающее большое число особей, и половое, способствующее обогащению наследственности потомства. Понятие «чередование поколений» следует считать условным, так как ни спорофит, ни гаметофит в отдельности не могут обеспечить полного цикла развития растения, они являются различными этапами жизни одного и того же растения.

65. Систематика как раздел ботаники: цель, задачи, методы, связь с другими разделами ботаники. Составляющие ботанической систематики, современные филогенетические системы; таксономические категории и таксоны, ботаническая номенклатура. Суть и значение в фармации хемосистематических признаков.

Систематика растений изучает разнообразие растительного мира, выявляет, описывает, классифицирует растения, дает им наименования, устанавливает пути эволюции и родственные взаимосвязи. Как наука она сформировалась в XVI веке. Основная задача систематики — познать растения и создать единую систему растительного мира. По образному выражению академика А.Л. Тахтаджяна, «систематика есть одновременно и фундамент, и венец биологии, ее начало и конец, ее альфа и омега». Систематика включает такие тесно связанные между собой разделы, как таксономия, номенклатура и филогенетика.

Таксономия, или классификация, занимается распределением растений в соподчиненную систему категорий с учетом их строения, происхождения, биологических и физиологических особенностей. Таксономия использует определенные ранги, уровни классификации — таксономические категории, или систематические единицы. Основными из них являются: вид species, род genus, семейство — familia, порядок ordo, класс classis, отдел divisio, или phylum, царство regnum. Между основными категориями имеются промежуточные: подвид, подрод, подкласс, надцарство, подцарство и др. К конкретным таксономическим категориям относятся определенные группы организмов — таксоны. За их название, наименование отвечает такой раздел, как номенклатура. Например, семейство — это таксономическая категория, а семейство Solаnaсеае — таксон. Каждый таксон определенного уровня имеет в своем названии унифицированное окончание (например, отдел — phyta, класс —psida, семейство — асеае, род — а или — um). Это позволяет по названию таксона определить таксономическую категорию без ее указания. Все таксоны, кроме вида, принято называть одним словом, а вид — двумя: первое слово определяет род, к которому относится данный вид, второе вместе с первым составляет его видовое название. Бинарная номенклатура была предложена К. Линнеем, который описал и назвал большое количество растений. В соответствии с этой номенклатурой родовое название обозначается именем существительным и пишется с большой буквы, а видовое — именем прилагательным и пишется с маленькой буквы. После видового названия растения указывается сокращенно фамилия автора, описавшего и назвавшего данное растение впервые (например, Equisetum arvense L.— хвощ полевой, Линней).

Филогенетика устанавливает эволюционное родство видов, изучает историческое развитие растительных организмов, систематических групп и всего растительного мира. История филогенетики складывается из развития и совершенствования систем растительных организмов. После утилитарных систем первыми научными были искусственные морфологические системы, основанные на одном-двух произвольно выбранных признаках (К. Линней). Они просуществовали до XVII века, когда стали создаваться естественные системы, построенные на комплексе морфологических признаков, но без учета родственных связей (А. Жюсье). В конце ХIХ века появились эволюционные, или филогенетические, системы, учитывающие происхождение и родственные отношения групп растений, сравнительные данные молекулярной биологии, морфологии, анатомии, эмбриологии, кариологии, биохимии, географии и экологии растений (А. Энглер, А.А. Гроссгейм, А.Л. Тахтаджян). С начала XX века успешно развивается такое направление, как хемосистематика, основанное на сравнительном анализе химического состава растений различных систематических групп. Данные хемосистематики способствуют не только совершенствованию системы растений, но и указывают направления поиска дополнительных источников биологически активных веществ, ведут к открытию новых лекарственных растений.