Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература БФХ / molekuljarnaja biologija kletki v2

.pdf
Скачиваний:
108
Добавлен:
10.02.2017
Размер:
34.4 Mб
Скачать

521

Антитела к N-CAM нарушают нормальный ход развития сетчатки в тканевой культуре, а при введении в развивающийся глаз цыпленка препятствуют нормальному росту аксонов нервных клеток сетчатки. Как мы увидим позже (разд. 19.7.8), это позволяет предполагать, что N-CAM играет важную роль в развитии центральной нервной системы, способствуя межклеточной адгезии. Кроме того, клетки нервного гребня, формирующие периферическую нервную систему, находясь в составе нервной трубки, имеют большое количество N-CAM на своей поверхности и теряют его при миграции. Но когда они агрегируют, образуя ганглии, N-CAM появляется вновь (см. рис. 14-56), что указывает на важную роль N- CAM в построении ганглия. N-CAM экспрессируется также во время критических стадий в развитии многих ненервных тканей, где, как полагают, эти молекулы способствуют удержанию вместе специфических клеток.

Существует несколько форм N-CAM, каждая из которых кодируется отдельной мРНК. Разные мРНК образуются при альтернативных вариантах сплайсинга РНК-транскрипта одного и того же крупного гена. У большинства форм N-CAM большая внеклеточная часть полипептидной цепи (около 680 аминокислотных остатков) идентична и организована в виде пяти доменов, гомологичных доменам иммуноглобулинов, характерным для молекул антител (разд. 18.3.3). Таким образом, N-CAM принадлежит к тому же древнему суперсемейству «белков узнавания», что и антитела (разд. 18.6.20). Разные формы N-CAM различаются главным образом сегментами, связанными с мембраной, и цитоплазматическими доменами и поэтому могут по-разному взаимодействовать с цитоскелетом; в самом деле, одна из форм не пронизывает липидный бислой и соединена с плазматической мембраной только ковалентной связью с фосфатидилинозитолом (разд. 8.6.13) (рис. 14-66), в то время как другая секретируется и встраивается во внеклеточный матрикс. Каковы функциональные различия всех этих форм, не известно.

У позвоночных находят все больше гликопротеинов клеточной поверхности, осуществляющих Са2 +-независимую межклеточную адгезию, которые принадлежат к суперсемейству иммуноглобулинов. Однако не все поверхностные белки, участвующие в такой адгезии, относятся к этому суперсемейству; например, те, которые функционируют только в присутствии внеклеточных ионов Са2 + , принадлежат к другому семейству.

14.3.7. Кадгерины - семейство гомологичных гликопротеинов клеточной поверхности - осуществляют у позвоночных Са2+-зависимую межклеточную адгезию [34]

Иммунологические методы, представленные на рис. 14-63, сыграли также решающую роль в открытии трех родственных гликопротеинов клеточной поверхности, называемых кадгеринами, которые участвуют в Са2+-зависимой межклеточной адгезии у позвоночных. Е-кадгерин имеется на поверхности многих эпителиальных клеток (и в клетках зародышей млекопитающих до имплантации), N-кадгеринка поверхности нервных клеток, клеток сердца и хрусталика, а Р-кадгерин — на. клетках плаценты и эпидермиса; как и N-CAM, все они иногда встречаются и в других тканях в процессе развития. Эти три кадгерина являются гомологичными трансмембранными гликопротеинами, лишь однократно проходящими через мембрану (каждый из них состоит примерно из 700 аминокислотных остатков), и в этом отношении они сходны с N-CAM. Однако в отсутствие Са2+ конформация кадгеринов сильно изменяется и поэтому они быстро расщепляются протеолитическими ферментами. Поскольку некоторые клетки, например эндотелиальные,

Рис. 14-66. Схематическое изображение трех форм N-CAM. Во всех трех случаях внеклеточная часть полипептидной цепи одинакова и организована в виде пяти доменов, сходных с доменами иммуноглобулинов. Каждый такой домен представляет собой петлю, концы которой

связаны дисульфидными мостиками. (По данным В. A. Cunningham et al. Science 236: 799-800, 1987. Copyright 1987 by the AAAS.)

522

проявляют Са2 +-зависимую адгезию, но при этом не экспрессируют ни одного из трех известных кадгеринов, можно ожидать, что будут открыты новые представители семейства кадгеринов.

Лучше всех охарактеризован Е-кадгерин, называемый также молекулой адгезии печеночных клеток (L-CAM) или увоморулином. Большая внеклеточная часть его полипептидной цепи образует три гомологичных домена, по всей видимости не родственных доменам иммуноглобулинов. Вероятно, он играет важную роль в скреплении клеток различных эпителиев. Например, Са2 +-зависимая реагрегация диссоциированных эпителиальных клеток печени блокируется антителами к Е-кадгерину. В зрелых эпителиальных тканях Е-кадгерин обычно концентрируется в адгезионных поясах, где он, как полагают, служит трансмембранным линкером, связывающим кортикальные актиновые цитоскелеты клеток, удерживая их вместе (разд. 14.1.3). Он также участвует в компактизации бластомеров в раннем зародыше мыши (разд. 16.2.4). Во время компактизации вначале рыхло расположенные бластомеры прижимаются друг к другу, плотно упаковываются и связываются межклеточными соединениями. Антитела к Е-кадгерину блокируют компактизацию бластомеров, тогда как антитела, реагирующие со многими другими поверхностными молекулами этих клеток, не оказывают такого действия.

Кажется вероятным, что кадгерины играют ключевую роль и на более поздних стадиях развития позвоночных, так как их появление и исчезновение коррелирует с важными морфогенетическими событиями, при которых ткани отграничиваются друг от друга. Например, по мере формирования нервной трубки и отделения ее от покровной эктодермы (разд. 16.1.9) в клетках развивающегося нервного эпителия исчезает Е- кадгерин и появляется N-кадгерин (а также и N-CAM) (рис. 14-67). Когда клетки нервного гребня мигрируют из нервной трубки, они теряют N- кадгерин (как и N-CAM, см. выше), но вновь начинают вырабатывать его позднее, при формировании нервного ганглия (см. рис. 14-56).

Биологическое значение поразительной зависимости белков межклеточной адгезии из семейства кадгеринов от концентрации ионов кальция не известно. Например, еще нет никаких данных о том, что для контроля межклеточной адгезии в процессе развития осуществляется регуляция внеклеточной концентрации кальция.

14.3.8. Молекулы клеточной поверхности, участвующие в адгезии между клетками и между клетками и матриксом, можно рассматривать как элементы морфогенетического кода [35]

Цитофизиологические, морфологические и биохимические исследования указывают на то, что клетка даже одного определенного типа использует много различных молекулярных механизмов прикрепления к другим клеткам и к внеклеточному матриксу. Некоторые из этих механизмов связаны со специализированными межклеточными соединениями, а другие - нет (рис. 14-68). Поскольку отдельная клетка использует большое число адгезивных систем, почти у каждого типа клеток найдется хотя бы одна система межклеточной адгезии, общая с любым другим типом, и поэтому все клетки будут обладать некоторым сродством Друг к другу. Обычно клетки разных тканей (и даже от весьма далеких видов) способны образовывать друг с другом десмосомы, щелевые контакты и адгезионные соединения. Это позволяет предполагать, что участвующие в таких соединениях белки высококонсервативны (идет ли речь о разных тканях или видах). Однако точно так же, как каждая клетка многоклеточного животного содержит определенный набор поверхност-

Рис. 14-67. Иммунофлуоресцентные микрофотографии поперечного среза куриного эмбриона: развивающаяся нервная трубка помечена антителами к Е-кадгерину (А) и к N-кадгерину (5). Обратите внимание, что клетки лежащей выше эктодермы содержат только Е-кадгерин, а клетки

нервной трубки утратили Е-кадгерин, но в них появился N-кадгерин. (С любезного разрешения Kohei Hatta и Masatoshi Takeichi.)

523

Рис. 14-68. Обобщенная схема адгезионных механизмов, используемых типичными эпителиальными клетками для прикрепления друг к другу и к внеклеточному матриксу (базальной мембране). Слева представлены механизмы с участием специализированных областей, видимых при электронной микроскопии обычных препаратов и (или) препаратов, полученных методом замораживания-скалывания. Справа иные механизмы. В

некоторых случаях в соединении клеток между собой или с матриксом при помощи тех и других механизмов участвуют одни и те же гликопротеины клеточной поверхности. Как указывалось в тексте, все специализированные адгезионные механизмы, за исключением щелевых контактов, являются Са2 +-зависимыми; из остальных адгезионных механизмов лишь некоторые зависимы от Са2+

ных рецепторов, дающий ей возможность специфическим образом реагировать на комплементарный набор растворимых сигнальных молекул (гормонов или локальных медиаторов), так и каждая клетка в ткани обладает определенной комбинацией (или концентрацией) рецепторов, позволяющих ей связываться определенным специфическим образом с другими клетками или с внеклеточным матриксом.

В отличие от рецепторов для растворимых веществ, которые связывают свои специфические лиганды с высоким сродством, рецепторы, связывающие молекулы клеточной поверхности или внеклеточного матрикса, осуществляют это с относительно низким сродством. Поэтому действие этих рецепторов основано на многократном увеличении силы связывания за счет одновременного соединения многих рецепторов со многими лигандами соседней клетки или внеклеточного матрикса. Поскольку у каждых двух клеток имеется некоторый спектр специфических рецепторов адгезии для других клеток и для матрикса, а также их концентраций и распределения по клеточной поверхности, то это и будет определять суммарное сродство, с которым клетки связываются друг с другом и с матриксом. Можно полагать, что именно этот спектр и есть тот «морфогенетический код», который определяет, как клетки будут организованы в ткани. Поскольку животные клетки даже близко родственных типов правильно рассортировываются in vitro, они должны быть способны определять относительно малые различия в адгезивных свойствах и использовать эти различия для установления лишь наиболее

524

адгезивных из многих возможных контактов с другими клетками и матриксом. Наблюдения над подвижными клетками в культуре позволяют предполагать, как бы это могло осуществляться.

14.3.9. Высокоподвижные клетки служат чувствительными детекторами малых различий в адгезивности [36]

Клетки, участвующие в морфогенетических процессах у зародыша, часто очень подвижны. Если такие клетки диссоциировать и поместить в культуральную чашку, то вначале они будут по всем направлениям выпускать микрошипы и ламеллоподии, а затем активно расползаться по поверхности чашки. Эта подвижность часто совпадает с появлением различий между клетками и, следовательно, с периодом, когда важную роль должны будут играть процессы клеточного узнавания. Например, в зародыше Xenopus клетки внезапно становятся очень подвижными на стадии перехода к средней бластуле, когда начинается транскрипция генов (разд. 16.1.2).

Интенсивное изучение клеточной подвижности проводилось на культурах фибробластов, нейтрофилов и регенерирующих нейронов. Его результаты, суммированные в гл. И, указывают на то, что подвижные клетки являются чрезвычайно чувствительными детекторами малых различий в адгезивности. Микрошипы и ламеллоподии, выпускаемые во всех направлениях, по-видимому, участвуют в процессе «перетягивания каната», в результате которого клетка поляризуется и уверенно движется в направлении наиболее адгезивной части субстрата, даже если различия в адгезивности очень малы (разд. 11.6.3). Фибробласты, например, будут неуклонно двигаться вверх по малому градиенту адгезивности, создавшемуся на поверхности культуральной чашки. Изучение хемотаксиса у нейтрофилов позволяет предполагать, что подвижная клетка способна выявлять различия в адгезивности по обеим сторонам клетки всего лишь в 1%. Подобным же образом клетки в тканях могли бы с высокой чувствительностью расшифровывать «морфогенетический код» на клеточных поверхностях, уверенно двигаясь для установления тесного контакта

стеми "из соседних клеток, к которым они наиболее адгезивны.

14.3.10.Временные контакты могут инициировать тканеспецифическую межклеточную адгезию, которая затем стабилизируется контактами соединительного комплекса [37]

Какие из многочисленных типов межклеточных соединений, описанных в начале этой главы, могли бы осуществляться при миграции клеток и их взаимном узнавании при формировании тканей и органов? Чтобы выяснить это, можно использовать электронную микроскопию при изучении контактов между соседними клетками во время их передвижения в развивающемся зародыше или в зрелых тканях при репарации повреждений. Такие исследования показывают, что эти контакты, как правило, не приводят к формированию организованных межклеточных соединений. Тем не менее контактирующие мембраны часто тесно прижимаются друг к другу и располагаются параллельно, разделенные щелью в 10-20 нм. Именно на такое расстояние (около 13 нм) выступает из плазматической мембраны гемагглютинин вируса гриппа - первый гликопротеин плазматической мембраны, у которого была установлена трехмерная структура (разд. 8.6.12). Гликопротеины двух соседних плазматических мембран могут взаимодействовать друг с другом через щель в 10-20 нм, осуществляя адгезию. Такой тип временного контакта может быть оптимальным для клеточной локомоции-достаточно тес-

525

ный для сцепления, но не настолько плотный, чтобы клетка не могла передвигаться.

Поскольку контакты соединительного комплекса между подвижными эмбриональными клетками не видны (за исключением, возможно, небольших щелевых контактов), формирование межклеточных соединений может быть важным механизмом иммобилизации клеток внутри организованной ткани, когда она уже сформировалась. Разумная гипотеза состоит в том, что временная адгезия белков клеточной поверхности приводит к тканеспецифической межклеточной адгезии, которая затем стабилизируется в результате образования межклеточных соединений. Поскольку многие из трансмембранных гликопротеинов, участвующих в этом процессе, способны диффундировать в плоскости плазматической мембраны, они могут накапливаться в местах межклеточного контакта и, таким образом, использоваться как для временной адгезии, так и для формирования специализированных соединительных структур. Так, некоторые белки межклеточной адгезии, например Е-кадгерины (разд. 14.3.7), могут способствовать инициации межклеточной адгезии, а позднее становиться составной частью межклеточных соединений.

Чтобы расшифровать правила узнавания и связывания, используемые в морфогенезе сложных тканей, идеальной была бы возможность инактивировать различные типы белков-рецепторов межклеточной адгезии и адгезии между клетками и матриксом индивидуально и в различных комбинациях. По мере того как возрастает число охарактеризованных моноклональных антител и белковых фрагментов, каждый из которых блокирует один-единственный тип молекулы межклеточной адгезии или рецептора матрикса, и по мере того как гены, кодирующие эти белки клеточной поверхности, становятся доступными для использования in vitro и в трансгенных животных, эта мечта биологов развития становится реальностью.

Заключение

Диссоциированные и перемешанные клетки разных эмбриональных тканей позвоночных вновь ассоциируют предпочтительно с клетками той же ткани. Первоначальные трудности при изучении молекулярных механизмов, лежащих в основе нормальной организации клеток в сложные ткани у высших животных, стимулировали переход к изучению более простых систем. Свободноживущие миксамебы клеточного слизевика Dictyostelium discoideum при голодании агрегируют с образованием многоклеточных плодовых тел. Их межклеточная адгезия осуществляется по меньшей мере двумя гликопротеинами клеточной поверхности: один действует в раннем развитии и зависит от концентрации внеклеточного кальция, а другой - в более поздней стадии и не требует присутствия кальция. Процесс тканеспецифического узнавания у позвоночных, возможно, тоже осуществляется гликопротеинами клеточной поверхности по меньшей мере двух семейств: члены одного-Са2 +-зависимые (кадгерины), другого-Со2 +-независимые (представленные N-CAM и другими членами суперсемейства иммуноглобулинов). Оба семейства молекул межклеточной адгезии, по-видимому, играют важную роль в управлении морфогенезом позвоночных. Поскольку клетки даже одного типа используют различные молекулярные механизмы слипания друг с другом (и с внеклеточным матриксом), специфичность межклеточной адгезии, наблюдаемая в эмбриональном развитии, должна быть суммарным результатом сродства большого числа разных адгезионных систем. Проявляемая подвижными клетками способность определять малые различия в адгезивности позволяет представить себе, каким образом специфические

526

комбинации, концентрации и распределение молекул межклеточной адгезии и рецепторов для матрикса, имеющиеся у клеток каждого типа могли бы использоваться в качестве необходимого «морфогенетического кода».

Литература

Цитированная

1.Bock G., Clark S., eds. Junctional Complexes of Epithelial Cells. Ciba Symposium 125, New York, Wiley, 1987. Farquhar M. G., Palade G. E. Junctional complexes in various epithelia. J. Cell Biol., 17, 375-412, 1963. Gilula N. B. Junctions between cells. In: Cell Communication (R. P. Cox, ed), pp. 1-29. New York, Wiley, 1974.

Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol., 45, 272-290, 1970. Staehelin L.A., Hull В. Е. Junctions between living cells. Sci. Am., 238(5), 141 152, 1978.

2.Diamond J. M. The epithelial junction: bridge, gate and fence. Physiologist, 20, 10-18, 1977.

Madara J. L. Tight junction dynamics: is paracellular transport regulated? Cell, 53, 497-498, 1988.

Madara J. L., Dharmsathaphorn K. Occluding junction structure-function relationships in cultured epithelial monolayer. J. Cell Biol., 101, 2124-2133, 1985.

Simons K., Fuller S. D. Cell sufrace polarity in epithelia. Annu. Rev. Cell Biol., 1, 243-288, 1985.

van Meer G., Gumbiner В., Simons K. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature, 322, 639-641, 1986.

3.Burridge K., Fath K., Kelly Т., Nuckolls G., Turner C. Focal adhesions: transmem-brane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol., 4, 487-526, 1988.

Geiger В., Volk Т., Volberg T. Molecular heterogeneity of adherens junctions. J. Cell Biol., 101, 1523-1531, 1985.

4.Franks W. W., Cowin P., Schmelz M., Kuppell H.-P. The desmosomal plaque and the cytoskeleton. In: Junctional Complexes of Epithelial Cells. Ciba Foundation Symposium 125 (G. Bock, S. Clark, eds.), pp. 26-48, New York, Wiley, 1987. Garrod D. R. Desmosomes, cell adhesion molecules and the adhesive properties of cells in tussues. J. Cell Sci. Suppl. 4, 221-237, 1986.

Jones J. C. R., Yokoo K. M., Goldman R. D. Further analysis of pemphigus autoanti-bodies and their use in studies on the heterogeneity, structure, and function of desmosomes. J. Cell Biol., 102, 1109-1117, 1986.

Steinberg M. S. et al. On the molecular organization, diversity and functions of desmosomal proteins. In: Junctional Complexes of Epithelial Cells. Ciba Foundation Symposium 125 (G. Bock, S. Clark, eds.), pp. 3-25. New York, Wiley, 1987.

5.Bennett M., Spray D., eds. Gap Junctions. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, 1985.

Furshpan E. J., Potter D. D. Low-resistance junctions between cells in embryos and tissue culture. Curr. Top. Dev. Biol., 3, 95-127, 1968. Giluda N. В., Reeves 0. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature, 235, 262-265, 1972.

Hooper M. L., Subak-Sharpe J. H. Metabolic cooperation between cells. Int. Rev. Cytol., 69, 45-104, 1981.

Loewenstein W.R. The cell-to-cell channel of gap junctions. Cell, 48, 725-726, 1987. Neyton J., Trautmann A. Single-channel currents of an intercellular junction. Nature, 317, 331-335, 1985.

Pitts J.D., Finbow M.E. The gap junction. J. Cell Sci., Suppl. 4, 239-266, 1986.

Young J. D.-E., Cohn Z. A., Gilula N. B. Functional assembly of gap junction conductance in lipid bilayers: demonstration that the major 27 kd protein forms the Junctional channel. Cell, 48, 733-743, 1987.

6. Caspar D. L. D., Goodenough D., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and X-ray diffraction. J. Cell Biol., 74, 605-628, 1977.

Gilula N. B. Topology of gap junction protein and channel function. In: Junctional Complexes of Epithelial Cells. Ciba Foundation Symposium 125 (G. Bock, S. Clark, eds.), pp. 128-139, New York, Wiley, 1987.

Paul D. L. Molecular cloning of cDNA for rat liver gap junction protein. J. Cell Biol., 103, 123-134, 1986.

527

Unwin P. N. Т., Zampighi G. Structure of the junction between communicating cells. Nature, 283, 545-549, 1980. 7. Caveney S. The role of gap junctions in development. Annu. Rev. Physiol., 47, 318-335, 1985.

Warner A. E. The role of gap junction in amphibian development. J. Embryol. Exp. Morphol. Suppl. 89, 365-380, 1985.

Warner A. E., Guthrie S.C., GilulaN.B. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature, 311, 127-131, 1984.

8. Rose В., Loewenstein W. R. Permeability of cell junction depends on local cytoplas-mic calcium activity. Nature, 254, 250-252, 1975.

Saez S. C. et. al. Cyclic AMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide. Proc. Natl. Acad. Sci. USA, 83, 2473-2477, 1986.

Spray D. C., Bennett M. V. L. Physiology and pharmacology of gap junctions. Annu. Rev. Physiol., 47, 218-303, 1985.

Turin L., Warner A. E. Intracellular pH in early Xenopus embryo: its effect on current flow between blastomeres. J. Physiol. (Lond.), 300, 489504, 1980.

9.Hay E.D., ed. Cell Biology of Extracellular Matrix. New York, Plenum, 1981. McDonald J. A. Extracellular matrix assembly. Annu. Rev. Cell Biol., 4, 183-208, 1988.

Piez K. A., Reddi A. H., eds. Extracellular Matrix Biochemistry. New York, Elsevier, 1984.

10.Evered D., Whelan J., eds. Functions of the Proteoglycans, Ciba Foundation Symposium 124. New York, Wiley, 1986.

Hascall V. C., Hascall G. K. Proteoglycans. In: Cell Biology of Extracellular Matrix (E.D. Hay, ed.), pp. 39-63. New York, Plenum, 1981. Wight T. N.. Meeham R. P., eds. Biology of Proteoglycans. San Diego, CA, Academic Press, 1987.

11.Laurent T.C., Eraser J. R. E. The properties and turnover of hyaluronan. In: Functions of the Proteoglycans. Ciba Foundation Symposium 124 (D. Evered, J. Whelan, eds.), pp. 9-29. New York, Wiley, 1986.

Toole B. P. Glycosaminoglycans in Morphogenesis. In: Cell Biology of Extracellular Matrix (E.D. Hay, ed.), pp. 259-294. New York, Plenum, 1981.

12.Dorfman A. Proteoglycan biosynthesis. In: Cell Biology of Extracellular Matrix (E.D. Hay, ed.), pp. 115-138. New York, Plenum, 1981. Hassell J. R., Kimura J. H., Hascall V. C. Proteoglycan core protein families. Annu. Rev. Biochem., 55, 539-567, 1986.

Heinegärd D., Paulsson M. Structure and metabolism of proteoglycans. In: Extracellular Matrix Biochemistry (K. A. Piez, A. H. Reddi, eds.),

pp. 277-328. New York, Elsevier, 1984.

Ruoslahti E. Structure and biology of proteoglycans. Annu. Rev. Cell Biol., 4, 229-255, 1988.

13. Fransson L.-A. Structure and function of cell-associated proteoglycans. Trends Biochem. Sci., 12, 406-411, 1987.

Höök M., Kjjellen L., Johansson S., Robinson J. Cell-surface glycosaminoglycans. Annu. Rev. Biochem., 53, 847-869, 1984. Rees D. A. Polysaccharide Shapes, Outline Studies in Biology, pp. 62-73. London, Chapman and Hall, 1977.

Scott J. E. Proteoglycan-collagen interactions. In: Functions of the Proteoglycans. Ciba Foundation Symposium 124 (D. Evered, J. Whelan, eds.), pp. 104-124. New York, Wiley, 1986.

14. Burgeson R.E. New collagens, new concepts. Annu. Rev. Cell Biol., 4, 551-577, 1988.

Linsenmayer T. F. Collagen. In: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 5-37. New York, Plenum, 1981. Martin G. R., Timpl R., Muller P. K., Ktihn K. The genetically distinct collagens. Trends Biochem. Sci., 10, 285-287, 1985.

15.Fleischmajer R., Olsen B.R., Ktihn K., eds. Biology, Chemistry, and Pathology of Collagen. Ann. N.Y. Acad. Sci., Vol. 460, 1985. Olsen B. R. Collagen Biosynthesis. In: Cell Biology of Extracellular Matrix (E.D. Hay, ed.), pp. 139-177. New York, Plenum, 1981.

Woolley D. E. Mammalian collagenases. In: Extracellular Matrix Biochemistry (K.A. Piez, A.H. Reddi, eds.), pp. 119-157. New York, Elsevier, 1984.

16.EyreD.R., PazM.A., Gallop P.M. Cross-linking in collagen and elastin. Annu. Rev. Biochem., 53, 717-748, 1984.

Piez K. A. Molecular and aggregate structures of the collagens. In: Extracellular Matrix Biochemistry (K.A. Piez, A.H. Reddi, eds.), pp. 1-39. New York, Elsevier, 1984.

17. Prockop D.J., Kivirikko K.I. Heritable diseases of collagen. New Engl. J. Med., 311, 376-386, 1984.

528

Trelstad R. L., Silver F. H. Matrix assembly. In: Cell Biology of Extracellular Matrix (E. D. Hey, ed.), pp. 179 215. New York, Plenum, 1981.

18.Stopak D., Harris A. K. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev. Biol., 90, 383-398, 1982.

19.Yurchenco P.O., Furthmayr H. Self-assembly of basement membrane collagen, Biochemistry, 23, 1839-1850, 1984.

Yurchenco P. D., Ruben G. C. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol., 105, 2559-2568, 1987.

20.Cleary E. G., Gibson M. A. Elastin-associated microfibrils and microfibrillar proteins. Int. Rev. Connect. Tissue Res., 10, 97-209, 1983. Gosline J. M., Rosenbloom J. Elastin. In: Extracellular Matrix Biochemistry (K.A. Piez, A.H. Reddi, eds.), pp. 191 227. New York, Elsevier, 1984.

Ross R., Bornstein P. Elastic fibers in the body. Sci. Am., 224(6), 44 52, 1971.

21.Dufour S., Duband J.-L., Kornblihtt A. R., ThieryJ.P. The role of fibronectins in embryonic cell migrations. Trends Genet., 4, 198-203, 1988. Hynes R.O. Molecular biology of fibronectin. Annu. Rev. Cell Biol., 1, 67-90, 1985. Hynes R.O. Fibronectins. Sci. Am., 254(6), 42-51, 1986. Hynes R. 0., Yamada K. M. Fibronectins: multifunctional modular proteins. J. Cell Biol., 95, 369-377, 1982.

Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science, 238, 491-497, 1987.

22.Humphries M. J., Akiyama S. K., Komoriya A., Olden K., Yamada K. M. Neurite extension of chicken peripheral nervous system neeurons on fibronectin: relative importance of specific adhesion sites in the central cell-binding domain and the alternatively spliced type III connecting segment. J. Cell Biol., 106, 1289-1297, 1988.

Tamkun J. W., Schwarzbauer J. E., Hynes R. 0. A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc. Natl. Acad. Sci. USA, 81, 5140-5144, 1984.

23.Farquhar M. G. The glomerular basement membrane: a selective macromolecular filter. In: Cell Biology of Extracellular Matrix (E.D. Hay, ed.), pp. 335-378. New York, Plenum, 1981.

Martin G. R., Timpl R. Laminin and other basement membrane components. Annu. Rev. Cell Biol., 3, 57-85, 1987.

Sasaki M., Kato S., Kohno K., Martin G. R., Yamada Y. Sequence of the cDNA encoding the laminin Bl chain reveals a multidomain protein contaning cysteine-rich repeats. Proc. Natl. Acad. Sci. USA, 84, 935 939, 1987.

24.Reist N.E., Magill C., McMahan U.J. Agrin-like molecules at synaptic sites in normal denervated and damaged skeletal muscles. J. Cell Biol., 105, 2457-2469, 1987.

25.Anderson D. C., Springer T.A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1 and PI50,95 glycoprotein. Annu. Rev. Med., 38, 175-194, 1987.

Buck C.A., Horwitz A.F. Cell surface receptors for extracellular matrix molecules. Annu. Rev. Cell Biol., 3, 179-205, 1987.

Hynes R.O. Integrins: a family of cell surface receptors. Cell, 48, 549-554, 1987. Ruoslahti E. Fibronectin and its receptors. Annu. Rev. Biochem., 57, 375-414, 1988.

26.Bornstein P., Duksin D., Balian G., Davidson J. M., Crouch E. Organization of extracellular proteins on the connective tissue cell surface: relevance to cell-matrix interactions in vitro and in vivo. Ann. N. Y. Acad. Sci., 312, 93-105, 1978.

Burridge K., Path K., Kelly Т., Nuckolls u., Turner C. Focal adhesion: transmem-brane junctions between the extracellular matrix and cytoskeleton. Annu. Rev. Cell Biol., 4, 487-526, 1988.

Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage. Nature, 320, 531-533, 1986.

Hyens R. Structural relationships between fibronectin and cytoplasmic cytoskeletal networks. In: Cytoskeletal Elements and Plasma Membrane Organization (G. Poste, G. L. Nicolson, eds.) Vol 7, pp. 100-137. Amsterdam, Elsevier, 1981.

Watt F. T. The extracellular matrix and cell shape. Trends Biochem. Sci., 11, 482-485, 1986.

27.Le Douarin N.. Smith J. Development of the peripheral nervous system from the neural crest. Annu. Rev. Cell Biol., 4, 375-404, 1988.

McClay D. R., Ettensohn C.A. Cell adhesion and morphogenesis. Annu. Rev. Cell Biol., 3, 319-346, 1987.

28.Loomis W. F. Dictyostelium discoideum. A Developmental System. New York, Academic Press, 1975.

29.Banner J. T. Chemical signals of social amoebae. Sci. Am., 248 (4), 114 120, 1983. Gerisch G. Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu. Rev. Biochem., 56, 853 879, 1987.

529

30.Gerisch G. Interrelation of cell adhesion and differentiation in Dictyostelium discoideum. J. Cell Sci., Suppl. 4, 201-219, 1986. Gerisch G. Univalent antibody fragments as tools for the analysis in Dictyostelium. Curr. Top. Dev. Biol., 14, 243-270, 1980.

31.Hennings H., Holbrook K.A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp. Cell Res., 143, 127-142, 1983.

32.Moscona A.A., Hausman R.E. Biological and biochemical studies on embryonic cell-cell recognition. In: Cell and Tissue Interactions. Society of General Physiologists Series (J. W. Lash, M. M. Burger, eds.), Vol. 32, pp. 173-185. New York, Raven, 1977.

Roth S., Weston J. The measurement of intercellular adhesion. Proc. Natl. Acad. Sci. USA, 58, 974 980, 1967.

33.Cunningham B. A. et al. Neural cell adhesion molecule: structure, immunoglo-bulin-like domains, cell surface modulation, and alternative RNA splicing. Science, 236, 799-806, 1987.

Edelman G. M. Cell-adhesion molecules: a molecular basis for animal form. Sci. Am., 250(4), 118-129, 1984.

Edelman G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu. Rev. Cell Biol., 2 81-116, 1986. Rutishauser U., Goridis C. N-CAM: the molecule and its genetics. Trends Genet., 2, 72-76, 1986.

Williams A. F., Barclay A. N. The immunoglobulin superfamily - domains for cell surface recognition. Annu. Rev. Immunol., 6, 381-406, 1988.

34.Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development, 102, 639-655, 1988.

35.Ekblom P., Vestweber D., Kemler R. Cell-matrix interactions and cell adhesion during development. Annu. Rev. Cell Biol., 2, 27 48, 1986. Garrod D. R. Desmosomes, cell adhesion molecules and the adhesive properties of cells in tissues. J. Cell Sci. Suppl. 4, 221-237, 1986. Jessel Т. М. Adhesion molecules and the hierarchy of neural development. Neuron, 1, 3-13, 1988.

Steinberg M. S. The adhesive specification of tissue self-organization. In: Morphogenesis and Pattern Formation (T. G. Connelly et al., eds.), pp. 179-203. New York, Raven, 1981.

36.Devereotes P., Zigmond S. H. Chemotaxis in eukaryotic cells. Annu. Rev. Cell Biol., 4, 649-686, 1988.

37.TrinkausJ.P. Cells into Organs, 2nd ed., pp. 69-178, Englewood Cliffs, NJ, Prentice-Hall, 1984.

530

Оглавление

8.

Внутриклеточная сортировка макромолекул и

8.3.3.

В ядро активно переносятся только белки,

 

сохранение клеточных компартментов 5

 

содержащие специальные сигналы 27

8.1

Компартментация в клетках высших организмов 5

8.3.4.

Некоторые РНК покидают ядро через ядерные поры 28

 

 

8.1.1.

Все эукариотические клетки содержат набор основных

 

Заключение 28

8.4.

Транспорт белков в митохондрии и хлоропласты 29

 

ограниченных мембраной органелл 5

 

 

 

 

8.4.1.

Митохондриальные сигнальные пептиды

8.1.2.

Топология мембранных органелл связана с

 

представляют собой амфипатические аминокислотные

 

их эволюционным происхождением 8

 

последовательности 29

8.1.3.

Внутриклеточный транспорт белков по ЭР

8.4.2.

Перенос веществ в митохондриальный матрикс зависит как

 

и аппарату Гольджи можно проследить с по-

 

от электрохимического градиента на внутренней мембране,

 

мощью радиоавтографии 10

 

так и от гидролиза АТР 30

8.1.4.Транспорт белков происходит по двум основным путям -

через цитозоль и через

8.4.3.

Митохондриальные белки проникают в матрикс в зонах

ЭР 13

 

слипания, связывающих две мембраны 30

8.1.5.Белки могут перемещаться между компартментами двумя

 

принципиально различными способами 14

8.4.4.

Когда белки проникают в митохондриальный матрикс, они

 

 

 

разворачиваются 31

8.1.6.

Сигнальные пептиды и сигнальные участки

8.4.5.

Для транспорта белков в межмембранное

 

определяют судьбу белка 15

 

пространство митохондрий необходимы два

8.1.7.

Клетки не могут строить свои мембранные

 

сигнала 32

 

органеллы de novo: им требуется информация,

8.4.6.

Для переноса белков из цитозоля во внешнюю

 

содержащаяся в самой органелле 16

 

митохондриальную мембрану также необходимо их

 

 

 

разворачивание 33

 

Заключение 17

8.4.7.

Для того, чтобы направлять белки в тилакоидную мембрану

8.2.

Цитозоль 17

 

хлоропластов, необходимы два сигнальных пептида 33

8.2.1.Организация цитозоля поддерживается белковыми

 

филаментами 17

 

Заключение 34

8.2.2.

Многие белки претерпевают в цитозоле ковалентные

8.5.

Пероксисомы 35

 

модификации 18

 

 

8.2.3.

Некоторые белки цитозоля прикреплены к

8.5.1.

Пероксисомы используют в реакциях окисления

 

цитоплазматической стороне мембраны через цепь жирной

 

молекулярный кислород и перекись водорода 35

 

кислоты 19

 

 

8.2.4.

Некоторые белки цитозоля являются короткоживущими 20

8.5.2.

Все компоненты пероксисом поступают из цитозоля 37

8.2.5.

У эукариот избирательная замена белков происходит при

 

Заключение 38

 

помощи убикитин-зависимого протеолиза 21

8.6.

Эндоплазматический ретикулум 38

8.2.6.

Стабильность белка может определяться

8.6.1.

Прикрепленные к ЭР рибосомы определяют границы его

 

ферментами, повреждающими его N-конец 22

 

гранулярных областей 39

 

 

8.6.2.

Некоторые специализированные клетки изобилуют гладким

8.2.7.

Белки теплового шока позволяют предотвратить накопление

 

ЭР 40

 

в клетке белковых агрегатов 23

8.6.3.

Гранулярные и гладкие области ЭР могут быть разделены

 

 

 

центрифугированием 41

 

Заключение 23

8.6.4.

Гранулярные участки ЭР содержат белки, ответственные за

8.3.

Транспорт белков и РНК в ядро и из ядра 24

 

связывание рибосом 43

 

 

8.6.5.

Впервые сигнальные пептиды были обнаружены в белках,

8.3.1.

Двойную ядерную мембрану пронизывают ядерные поры 24

 

попадающих в ЭР 43

 

 

8.6.6.

Частица, распознающая сигнал, направляет

8.3.2.

Белки активно проникают в ядро через ядерные поры 26

 

сигнальный пептид ЭР к специфическому

 

 

 

рецептору в мембране ЭР 44

Соседние файлы в папке Литература БФХ