Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
180
Добавлен:
18.06.2017
Размер:
1.25 Mб
Скачать

Регуляторные белки, подавляющие транскрипцию структурных генов, наз репрессорами.

Последовательности нуклеотидов регуляторных генов, с которыми взаимодействуют белки репрессоры, получили название операторов.

Регуляция, связанная с подавлением транскрипции, наз негативной.

Регуляторные белки, активирующие транскрипции. структурных генов, наз активаторами. Регуляция, связанная с активацией транскрипции получила наз – позитивной.

К негенетиским факторам регуляции экспрессии генов, или эффектрорам, относятся в-ва небелковой природы. Взаимодействуя с регуляторными бедками, они изменяют их биологическую активность. Различают 2 вида эффекторов: индукторы – «включающие» транскрипцию и корепрессоры, «выкл её».

Функционирование лактозного оперона киш палочки.

Лактозный оперон E coil включ след элементы: 3 гена, кодирующих белки ферменты: B-галактозидазу, пермеазу и трансацетилазу, участвующие в метаболизме лактозы и транспорте её в клетку, и регуляторной области. Регуляторная область, в свою очередь, сост из промотора, оператора- последовательности нуклеотидов для связ белка репрессора, а также последовательности нуклеотидов для связ белка активатора. Активность генов контролир регуляторным геном Lac1.

При выращивании E.coli на среде, содержащей только глюкозу геирегулятор лак-оперон синтезирует активный белок-репрсссор, который, взаимодействуя с оператором, «выключает» транскрипцию структурных генов, кодирующих ферменты, участвующие в метаболизме и транспорте лактозы в клетку.

Если клетки E.coli перенести на среду, содержащую только лактозу, то проникая внутрь клеток небольшая часть ее превращается в аллолактозу, которая связываясь с белком -репрессором, инактивируст его. В результате РНК-полимераза осуществляет транскрипцию полицистронной мРНК для синтеза всех ферментов, необходимых для транспорта и метаболизма лактозы.

В данном случает осуществляется негативная регуляция генов оперона. При этом аллолактоза служит ИНДУКАТОРОМ генов лак-оперона, кодирующего белки, участвующие в транспорте и метаболизме лактозы.

При культивировании кишечной палочки на среде, содержащей как лактозу, так и глюкозу клетки Е coli, используют для гликолиза в основном глюкозу. Указанная особенность метаболизма обусловливается наличием у Е coli механизма положительной регуляции активности генов lac оперона.

50. общая схема регуляции генов у эукариот

1) осуществление транскрипции эукриотических генов возможно лишь при декомпактизации хроматина: 2) регуляция активности генов у эукариот осуществляется на всех уровнях реализации наследственной информации: на уровне транскрипции, РНК -процессннта альтернативный сплайсинг), транспорта зрелой мРНК из ядра в цитоплазму, трансляции и посттрансляционных преобразований белков ( химическая модификация и разрушение функционально активного полипептида) 3)активность каждою структурного гена контролируется многими генами-регуляторами, а эффекторами часто служат гормоны.

51. Регуляция активности генову эукариот. белов р53. альтернативный сплайсинг.

схема регуляции генов у эукариот

1) осуществление транскрипции эукриотических генов возможно лишь при декомпактизации хроматина: 2) регуляция активности генов у эукариот осуществляется на всех уровнях реализации наследственной информации: на уровне транскрипции, РНК -процессннта альтернативный сплайсинг), транспорта зрелой мРНК из ядра в цитоплазму, трансляции и посттрансляционных преобразований белков ( химическая модификация и разрушение функционально активного полипептида) 3)активность каждою структурного гена контролируется многими генами-регуляторами, а эффекторами часто служат гормоны.

существуют три основных способа регуляции трансляции:

- Позитивная регуляция на основе сродства мРНК к инициирующей рибосоме и факторам

инициации; - негативная регуляция с помощью белков-репрессоров, которые, связываясь с мРНК, блокируют инициацию (трансляционная репрессия); - тотальная регуляция трансляции всей совокупности.

Центральную роль в остановке клеточного цикла играет белок р53, который служит транскрипционным фактором генов, отвечающих за остановку клеточного деления (например гена белка р21, являющегося ингибитором всех комплексов циклин – Цзк), а также генов, запускающих апоптоз.

Белок р53 синтезируется постоянно, но в обычных условиях его активность оказывается весьма низкой и лишь при нарушении при нарушениях структуры ДНК, хромосом микротрубочек, участвующих в формировании веретена деления, и других структур клетки, она значительно возрастает. Высокая активность белка р53 вызывает остановку клеточного цикла, либо гибель клетки.

активация белком р53 гена белка р21: белок р21 – связывается с комплексом циклин-Цзк и останавливает клеточный цикл.

Белок р53 активирует транскрипцию гена, кодирующего белок р 21.

52. Регуляция активности генов на уровне трансляции и посттрансляционных преобразований белков. Трансляционная репрессия на примере регуляции железом трансляции белков ферритина.

схема регуляции генов у эукариот

1) осуществление транскрипции эукриотических генов возможно лишь при декомпактизации хроматина: 2) регуляция активности генов у эукариот осуществляется на всех уровнях реализации наследственной информации: на уровне транскрипции, РНК -процессннта альтернативный сплайсинг), транспорта зрелой мРНК из ядра в цитоплазму, трансляции и посттрансляционных преобразований белков ( химическая модификация и разрушение функционально активного

полипептида) 3)активность каждою структурного гена контролируется многими генами-регуляторами, а эффекторами часто служат гормоны.

существуют три основных способа регуляции трансляции:

- Позитивная регуляция на основе сродства мРНК к инициирующей рибосоме и факторам

инициации; - негативная регуляция с помощью белков-репрессоров, которые, связываясь с мРНК, блокируют инициацию (трансляционная репрессия); - тотальная регуляция трансляции всей совокупности.

РЕГУЛЯЦИЯ железом трансляции белка ферритина.

Железо входит в состав активных центров многих белков (гемоглобин, миоглобин, цитохромы) однако ионы свободного железа токсичны для клетки и поэтому связываются и переводятся в неклеточную форму белком ферритином. Синтез ферритина в клетке, в свою очередь, зависит от уровня свободного железа: в присутствии железа феррин синтезируется, в то время как при его недостатке трансляция Мрнк ферритина останавливается на стадии инициации.

Регуляция синтеза ферритина зависит от специфической последовательности образующей шпичелную структуру а 5'-НТО мРНК ферритина. При отсутствии железа с этой последовательностью связывается белок-аконитаза, который препятствует сканированию Мрнк рибосомами. Приналичии ионов железа аконитаза соединяется с ними и перестаёт связываться с ферритиновой мрнк. В результате мрнк становится активной в синтезе ферритина.

53. Изменчивость иеё формы. модиф и комбин изменч.

изменчивость делиться на:

1) ненаследственная. (та делится на средовую и модификационную)

она хар-ся тем что не затрагивает генетический аппарат организма. Средовая - хар-на для организмов с одинаковым генотипом. внешние условия могут изменять активность ферментов и при одинаковом генотипе возникают разные фенотипы.

МОДИФИКАЦИЯвариант проявления признаков у организмов с одинаковым генотипом. Модификационная изменцивость в первую очередь хар-на для количественных признаков. Если объекты с одинкак генотипом выстроить по мере возрастания изучаемого признака – получится вариационный вариант. Модификацион изменц приводи тк бораз непрерывных рядов изменцивости признака. Соответственным образом изменяя средовое влияние можно управлять модификационной изменчивастью.

Наследственные фенотипические изменения, возникающие на основе одного и того же генотипа в разных условиях среды, наз Модификаионной изменцивостью или модификациями.

Пределы возможных изменений признака наз – нормой реакции. Она определяется генотипом и передаётся по наследству потомкам.

Модификативная изменчивость носит направленный групповой характер и не наследуется в ряду поколений. Для модификайии хар-на определённая направленность, имеющая адаптивный характер.

(2) наследственная (та делится на комбинативную и мутационную)

Комбенатив изм – хар-на только для организмов в жизненном цикле которых есть половое

размножение.

ПРИЧИНЫ КОМБЕНАТИВ ИЗМЕНЧИВОСТИ: 1) кроссинговер в пахитеме. профаза 1. 2)независимое и случайное расхождение рекомбинантных хромосом в анафазе первого делен мейоза. 3) случайное и независимое расхождение однохроматидных хромосом в анафазе 2 деления мейоза.

за счет этих 3х причин обеспечивается ген. уникальность каждой гаметы.

Комбинативная изменчивость возник в результате рекомбинации генов у организмов, размножающихся половым путём. В основе этой «перетасовки» генов лежат три процесса, происходящие при половом размножении.

Мутации - случайные скачкообразные необратимые не имеющие приспособительной ценности изменения на любом структурном уровне ген. материала.

54. Мутации, их свойства. Классификация мутаций

Мутации – случайн скачкообразн ненаправлен необратим не имеющие приспособитительной ценности изменения на любом структурном уровне ген материала.

Мутационн теория (основы заложил Гуго де Фриз, 1901-1903 гг.) Современ мутацион теория содержит следующ положения:

1.дискретные (прерывистые) изменения наследственного материала организмов.

2.возник внезапн, в отлич от модификац, они не образ непрерывнх рядов изменч-и, не группируются вокруг среднег типа. 3.М. - редкие события; вероятность их возникнов состав1 на 10-1000 тысяч копий одног гена. 4. Одни и те ж м. в определен услов мог возник неоднократн, накапливаясь в генофонде популяц.5. не имеют направлен хар-а. 6. По воздейств на популяц м. мог быть полезн, нейтральн, вредн (сублетальными) и летальн; чаще всег они сниж выживаемость мутантов.7. могут перед-я по наследс, влияя, таким образом, на ход преобразовател-х процесв. Хромосомн мутац образуются в результате разрывов хромосом и последующего воссоединения их частей в ином, по сравнению с неизмененной структурой, порядке. Фрагменты хромосом, которые не содержат центромеры, при этом часто утрачиваются. Хромосомные мутации оказывают на организм большей частью неблагоприятное влияние.

Клас-я мутаций

по характер изменен генетич материала

1.Генные.(Изменен структуры генов)

2.Хромосомн (Изменен структур хромосом 3. Геномные (Изменен числа хромосом)

Б. По проявлению в гетерозиготе

1. Доминантн (Проявляются в гетерозиготн состоян) 2. Рецессивные (Не проявл в гетерозиготн состоян)

В. До уклонению от нормы (от дикого типа):

1. Прямые (Изменен обычн состоян генетич матер-ла) 2.Обратные (реверсии) (Возврат к исходн состоян гена).

Г. В зависимости от причин, вызывающих мутации;

1. Спонтанные (Возник без видим причины, т.е. без каких-либо индуцирующих воздейств со стороны экспериментатора, вследств наруш процессов репликац и репарац) 2. Индуцированные (Возник под действ мутаген факторов (хим, физ-х и биолог-х мутагенов)

Д. По локализации в клетке

1. Ядерные (Мутации в генах, локализован в ядерном геноме) 2. Цитоплазматич (Мутации в генах митохондр и пластид)

Е. По отношению к возможности наследования

1. Генеративные (Происход в пол клетках, передаются по наследству) 2. Соматические (Происход в соматич клетках)

Ж. По значению (по воздействию на популяции)

1.Полезные (Повыша адаптац к услов среды) 2. Нейтральные (Не влияют на адаптац к услов среды)

3.Сублетальные (Снижают жизнеспособность) 4. Летальные (Привод к гибели организма)

55. Генные мутации, их классификация, механизм возникновения.

Мутации – случайн скачкообразн ненаправлен необратим не имеющие приспособитительной ценности изменения на любом структурном уровне ген материала.

Генными или точковыми - мутациями наз изменения химической структуры генов, воспроизводимые в последующем циклах репликации.

Генные мутации возникают в результате замены одной или нескольких пар азотистых оснований в структуре ДНК на другие, а также выпадения или добавления пар оснований, что приводит к нарушению порядка считывания ген инф.

Генные мутации. Действ на уровне нуклеотида рнк или комплементарн нуклеотидн пары ДНК.

Делтся на 1) со сдвиг рамки счит. Сдвиг можт быть вызван либо вставкой либо выпаден нукл-да. Эти мутаии как правило летальны или привод к тяжёл патологиям так как измен всю струк-ру белка. 2) без сдвига рамки. Мутц вызваны заменой нук-да. Замена мож происход по типу трансверсии и транзиции.

В результате генной мутации изменение биологической активности белка может проявлятся: - утратой функции; - появление новой функции; - усилением функции; - возникновением «токсичных свойств»

56. Хромосомные мутации, их классификация и общая характеристика. Геномные мутации, их классификация, механизмы возникновения.

Мутации – случайн скачкообразн ненаправлен необратим не имеющие приспособитительной ценности изменения на любом структурном уровне ген материала.

Хромосомн мутации - хромосомн перестройки (аберрации), изменяющ их структуру. Х мут, характер-я изменен полож участков хромосом. Выде л внутрихромосом перестройк (делеции, дупликации, инверсии), когда измен 1а хромосома, или хромосомы 1ой гомологич пары; и межхромосомн аберрации (транслокации), когд в перестройки вовлечены участки разн-х

негомологич хромосом.

Делеция - потеря каког-либ участка хром-ы - промежут или концевого. Делец одних и тех ж локусов в обеих гомологич хром-ах обычн легальны, так как утрач значит объем генетич инф. Таким образ, делеции возник вследств потери хромосомой того или иног её участка.

Дупликация (повторен) - присутств 1го и тогож участка хром-ы более чем в 1ом экземпляре в 1ой хром-е или в разнх негомологич хром-ах. При дупликац, в отлич от делеции, происход удвоен участка хром-ы. Мног дупликац вызыв появл новых фенотипич признаков, не сниж жизнеспособн орга низма. Участки с высок и умерен повторностью нуклеотид последов-тей имеются в генотипах мног мле коп и других классов животн и растен. Дупликации мног генов повыш устойчивость организма к различн мутациям и увелич генетич богатство популяций. Мног дупликац и делеции возникают в результате разрывов хромосомы вследств действия ионизирующей ра диации, хим вещ-в или вирусов. Они могут также возник при неравном кроссинговере, когда конъюгация гомо логов происход неточно, если в сосед участках хромосом наход сходн послед-сти ДНК.

Инверсия поворот отдельного участка хром-ы на 180°; при этом число генов в хром-е остается прежним, а изменяется лишь их послед-ть. Инверс мож возникнуть при образован хром-ой петли с последующ разрывом ее основан и растяжен петли в стороны. Таким образом, инверсией обозначают поворот участка хром-ы на 180 градусов. Инверс, действуя как «ингибитор кроссинговера», мож наруш процес конъюгац во врем мейоз и при вести к гибели гамет. Если этог непроисход, в фенотипе развивающ-ся из зиготы органзма возник изменен, как следств зависимости действ генов от их последоват-и в хром-е (эффект положен). Делец и дупликац измен числ ге нов в хром-ах, тогда как при инверсиях нару ш расположн генов в хром-ах. Межхромосомн перестройки (их наз транслокац) затрагив одновремен 2 негомологичн хром-ы.

Транслокация взаимн обмен участками межд 2 негомологич хром-и. Та ким образ, транслокац хар-ся обме ном участками межд негомологичн хром-и. В результ транслокац часть генов 1ой хром-ы переход в другую, негомологич н хром-у. В результ этог в профазе мейоза I вместо бивалентов образ квадриваленты, так как гомологичн участки, оказав-я в разнх хром-х притягиваются. Мейоз наруша ется. Лишь незначит часть гамет содерж весь набор генов. Остальн гибнут. Вследств этог гетерозиготы по транслокациям стерильны или обладают понижен плодовитостью.

У животных гетерозиготы по реципрокным транслокациям встреч редко. У многих растен обнаружен транслокац даже несколь ких негомологичн хром-м.

Геномн мутац возник в результ изменен числа хром-м в кариотипе клеток организма. два типа таких мутац - полиплоидн и гетероплоидн (анеуплоидная). При изменен таког рода в одних случаях (полиплоидия, анеуплоидия) обще колич наследствен мате риала изменяется, а в других (при слиян и разрывах хром-м в результ робертсоновских транслокаций) - остается не изменным.

Полиплоидия - кратн увеличен числа гаплоидн наборов хро м-м в клетках организма. Полиплоидия хар-ся увелич в кариотипе зиготы числа наборов хром-м. Все со матич клетки имеют диплоидн набор хром-м (2п). Организм с числом хромосом Зп наз триплоидным, тет-раплоидный имеет 4п, пентаплоидный - 5п, гексаплоид - 6п хромосом. Таким образом, полиплоидн формы мог быть триплоидами (Зп), тетраплоидами (4п) и т.д.

Полоид-я возник в результ нерасхожден хром-м во врем мейоза или митоза при наруш механизма работы веретен деления, вызван действ высок или низк темпер-ы, ионизирующих излучен, химич вещ-в (как в природе, так и в эксперименте). Нерасхожден всех хром-м в мейозе приводит к образ гамет с не редуцирован числом хром-м (2п). При слиян их во врем оплодотворен с обычн гаметами (п) могут возник нуть триплоидные зиготы, из котор разовьются триплоидн организмы. Полиплоиды мог возник также при спон танном удвоен хром-м в соматич клетках без последующ их делен. В этом случае клетки будут полиплоид ными ток в той части организма, котор разовьется из исходн полиплоидн клетки (химерные организмы).

Полиплоидия хар-ся увеличен числа хром-м путем добавлен целых хромосомных (геномных) набо ров. У полиплоидных форм происход увеличен числа хромосом, кратн гаплоидному набору, в результат чего образ триплоиды (Зп), тетраплоиды (4п), пентаплоиды (5п) и т.д. Полиплоидия может быть связан со слиян нередуциро ванных (диплоидных) гамет, образующихся в результат нерасхожден гомологичн хромосом к разным полюсам клетки во время мейоза. В этом случ вмест 2х клеток с гаплоидн набором хромо-м в конце 1го делен мейоза образ тольк одна клетка с диплоидн набором, из котор затем и формир аномальные диплоидн гаметы. Полипло идные форм могут образоваться в результат слиян соматич клеток или их ядер, а также путем удвоен хром-м при митозе, если в процессе митоза хроматиды не расходятся к полюсам клетки .

П. част встреч в природе у растений, что обеспеч им относит быстрые темпы видообразо вания. Полиплоидизацию путем искусствен разруш веретена деления с помощ колхицина широко применяют в селекции при выведении новых сортов растений. Мног культурн растен явл полиплоидами, например, карто фель, пшеница, хлопчатник, земляника и др.

Полиплоиды, возникающ при умножен геномов 1го вида, называются При мейозе у них происходит нарушение конъюгации.

Анеуплоидия (от греч. an - отрицательная частица, ей - вполне, pllos - кратный и eidos - вид), гетероплодия (от греч. heteros — иной, другой; означает разнородность) - геномная мутация, состоящая в изменении числа хромосом, некратным га плоидному. В результате этой мутации в хромосомном наборе одна или несколько хромосом отсутствуют или, наоборот, имеются в избытке.

Таким образом, гетероплоидия обусловлена изменением в геноме количества отдельных хромосом. При гетероплои-дии в нормальном хромосомном наборе либо отсутствуют или имеются в избыточном количестве одна или более хромосом. Различают моносомию (2п-1), нуллисомию (2п-2), трисомию (2п+1) и полисемию (2п+х) по отдельным хромосомам. Утрата одной хромосомы в диплоидном наборе (2п-1) называется моносомией, а организм - моносомиком. Причиной указанных ге номных мутаций служит нарушение расхождения хромосом в мейозе. При отсутствии двух негомологичных хромосом (2п-2) организм является двойным моносомиком, а при отсутствии пары гомологичных хромосом - нуллисомиком. Наличие в наборе трех гомологичных хромосом называется трисомией, а организм - трисомиком. Трисомия по двум негомологичным хромосомам (2п+2) наблюдается у двойных трисомиков. Тройные трисомики имеют генотип (2п+3). Термины тетрасомик, пентасомик, полисомик означают, что в хромосомном наборе присутствуют соответственно, 4, 5 или большее число лишних хромосом.

При анеууплоидии в нормальном хромосомном наборе либо отсутствует одна или более хромосом, либо присутствует одна или более добавочных хромосом. Организмы, у которых отсутствует одна пара хромосом называют "нуллисомиками", и "моносомиками", если отсутствует одна хромосома. Таким образом, понятия трисомик, тетрасомик и т.д. означают, что в хромосомном наборе присутствует соответственно одна, две и т.д. лишние хромосомы.

Ануеплоиды могут возникнуть, если в анафазе I мейоза гомологичные хромосомы одной или нескольких пар не ра зойдутся и вместе направятся к одному из полюсов клетки. Например, нерасхождение какой-то пары гомологичных хромо сом может привести к появлению гаметы, лишенной данной хромосомы, и другой гаметы, имеющей эту хромосому в двой ном количестве. Аналогичные изменения могут наблюдаться при нерасхождении сестринских хроматид в анафазе второго мейотического деления. В результате образуются гаметы с избыточным или недостаточным числом хромосом. Когда такие гаметы сливаются с нормальными гаметами, образуются зиготы с нечетным числом хромосом. Таким образом, при оплодо творении таких гамет нормальными половыми клетками образуются зиготы, в кариотипе которых изменено общее число хромосом за счет уменьшения (моносомия) или увеличения (трисомия) числа отдельных хромосом.

Геномные мутации изменяют баланс генов и тем самым нарушают процесс индивидуального развития организма. Большинство зигот с недостаточным числом хромосом обычно нежизнеспособны. Зиготы с лишними хромосомами иногда способны к развитию. Но развивающиеся из них анеуплоиды характеризуются пониженной жизнеспособностью и рядом резко выраженных аномалий. У человека такие мутации (приводящие к анеуплоидии) являются причиной возникновения многих тяжелых болезней (синдром Дауна, синдром Эдварса, синжром

Патау и др.).

57. Природные антимутационные механизмы. Световая и темновая репарация.

1) низкая реакционная способность молекулы ДНК. 2) система самокоррекции в ходе репликации ДНК исистема репарации (молекулярного восстанавления) исходной структуры молекулы ДНК. 3) вырожденность биологического кода. 4) экстракопирование генов 5) функциональная неравнозначность замены аминокислот в молекуле белка. 6) парность хромосом.

Пострепликативная репарация осущ путём рекомбинации (обмена фрагментами) между двумя вновь образованными двойными спиралям ДНК.

Восстановление целостности новой полинуклеотидной цепи одной из цепей осуществляется благодаря рекомбинации с соответствующим участком нормальной материнской цепи другой дочерней ДНК. При этом образовавшийся в материнской цепидефект затем заполняется путём синтеза соответствующей полинуклеотидной последовательности на неизменной цепи.

пострепликативная репарация ДНК.: 1) возникновение тиминового димера в одной из цепей

3)образование бреши во вновь синтезируемой цепии её заполнение из соответствующей цепи второй дочерней молекулы ДНК. 3) восстановление целостности цепидочерней молекулы ДНК за счет синтеза на коплементарной цепи.

58. хромосомные болезни. связанные с анеуплоидиями по аутосомам.

Синдром Эдвардса. (Описан в 1960 г. Эдвардсом.)

47, XX (ХУ), 18+ трисомия по18 хро мосоме Частота 1:5000-1:7000 (у новорож денных). Чаще встречается удевочек. Соотноше ние мальчиков и де вочек с синромомЭдвардса 1:3. При чины преобладания больных девочек по ка неизвестны. Геномная мутация (анеуплоидия). Воз никает при нерас хождении хромосом в мейозе (при ооили сперматогенезе).

Признаки. Наиболее характерными особенностями синдрома являются из менения мозгового черепа илица, дефекты опорно-двигательного ап парата, сердечно-сосудистой системы иполовых органов. Дети рож даются с низкоймассой тела, наблюдается задержка роста. Мышеч ный гипертонус. Внешняя картина нарушений многообразна: нижняя челюсть и отверстие рта маленькие (микрогнатия), узкие икороткие глазные щели, косоглазие, ушные раковины маленькие, низкораспо ложенные идеформированные; вывернутая нижняя губа, короткая и складчатая шея («обезьянья складка» на шее), выступающий затылок, удлиненный череп (долихоцефалия). Отмечаются аномально разви тые стопы (выступающие пятки), косолапость. Врожденные пороки сердца у90% детей. Для детей с этим синдромом характерны дефек ты мочевыделительной системы (подковообразная почка идр.). Тяжелая умственная отсталость (идиотия). 90% детей с синдромом Эдвардса погибают до 1 года. Причиной смерти становятся пневмонии, кишечная непроходимость, сердечно сосудистая недостаточность.

Синдром Патау. (Описан в 1960 г. врачом Патау).

47, XX (ХУ), 13+ трисомия по13 хро мосоме Частота 1:5000-1:7000 (у новорож денных). Мальчики идевочки с синдромом Патау рождаются с одина ковой частотой. Геномная мутация (анеуплоидия). Возник у 80-85% больных при нерас хождении хромосом в мейозе (при ооге-незе - в 80% случа ев или при сперма тогенезе - в 20% случаев). Другие механизмы возник новения синдрома (мозаицизм, транс локации) встреча ются редко.

Признаки. При рождении больные дети отличаются малым весом, хотя рож даются в срок

(средняя масса тела при рождении2500 г - ниже нормы почти на 900 г). Для беременных женщин типично многоводие. Ха рактерны аномалии черепа, лица и головного мозга. Типичный внеш ний вид больного ребенка: окружность черепа уменьшена (микроце фалия), низкий скошенный лоб, узкие глазные щели, запавшая пере носица, ушные раковины низко расположены и деформированы. Час то встречается расщелина губы инеба. Маленькие глазные яблоки (микрофтальмия илианофтальмия). Из аномалий костно-мышечной системы характерны полидактилия (шестипалость), синдактилия (сращение пальцев), деформация пальцев и ногтей, повышенная под вижность суставов. Среди патологии внутренних органов почти все гда отмечаются врожденные порокисердца (у80% детей дефекты межпредсердной имежжелудочковой перегородок). Отмечаются по роки органов пищеварения, пороки (кисты) почек, двойной мочеточ никидр. Глухота. Кроме того, в большинстве случаев поражены ге ниталии (половые органы): у девочек - это удвоение матки ивлага лища, у мальчиков - крипторхизм (неопущение яичек в мошонку). Практически все дети с синдромом Патау страдают глубокой идиотией. В связи с тяжелыми пороками развития 95% больных детей умирают в возрасте до 1 года.

Синдром Дауна.

47, XX (ХУ), 21+ трисомия по 21 хромосоме. Очень редко (в 1,5-4 % случаев) встречается транслокационная форма синдрома 46, ХХ(ХУ), t (14; 2 1q). Частота синдрома 1:700 - 1:800 рождений. Частота рождениядетей с синдромом Дауна зависит от возраста матери ив меньшей

степени от возраста отца. Риск

рождения больного

ребенка матерью в 40-46 лет в 16 раз

выше, чем в 20-24 года. Различий

 

 

почастоте встречаемости между расами нет. Геномная

мутация (анеуплоидия). Возникает при

нерасхождении хромосом в мейозе (приоогенезе - в 80% случаев или присперматогенезе - в 20%

случаев). Примерно 1,5-4%

больных страдают транслокационной формой

и около 2% - мозаичными.

Носители сбалансированной транслокации здоровы. При

транслокационном варианте синдрома в кариотипе 46 хромосом, а лишняя 21-я хромосома транслоцирована чаще всего на хромосому из группD (13-15) или О.

Признаки синдрома выявл уже прирожд и позднее проявл более четко. Больные отличаются слабоумием. Умствен отсталость (олигофрения) в 75% случаев в степени дебильности или имбецильности. Дети с с. Дауна в 1 год жизни заметно отстают в психомоторном развитии. Они позже начинают ходить исидеть. У больных хар-я внешность: монголоидный разрез глаз (опущены внутренние углы глазных щелей), широкая уплощенная переносица, коротк шея, круглое уплощен лицо, эпикант (полулунная вертикальная складка у внутреннего угла глаза), маленькие

деформир уши, полуоткрыт рот со слегка высунутым языком и выступающей нижнейчелюстью, плоский затылок. Мышечная гипотония. За счет сильной мышечной гипотонии объем движений в суставах увеличен. Взрослые больные обычно невысокого роста. Хаар-ны изменения дерматоглифики (на ладони имеется глубокая поперечная складка - «обезьянья борозда»). Нередко (в 50% случаев) отмечаются врожденные пороки сердца. Маленький череп. Пороки пищеварительной системы (стеноз двенадцатиперстной кишки). Болезнь сопровождается расстройством эндокринных желез, нарушением обмена веществ, снижением иммунитета. По этой причине они часто болеют пневмонией, инфекционными заболеваниями. Мужчины с синдромом Дауна бесплодны, женщины иногда могут иметь детей. Продолжительность жизни ниже популяционной (обычно до 1830 лет).

59. Хромосомболезни связанные с анеуплоидиями по половым хромосомам.

Синдром Клайнфельтера.(Описан в 1942 г.Клайнфельтером). 47, ХХУУ лицс мужским фенотипом наблюдается одна лишняя Х-хромосома. Частота 1:500-700 новорожденных мальчиков. Реже встречаются полисомии с одной У-хромосомой (отягощенный синдром Клайнфе льтера) : 48, ХХХУ; 49, ХХХХУ. Геномная мутация (анеуплоидия). Возникает при

нерасхождении хромосом в мейозе (приооили

сперматогенезе). У 80% мальчиков с

синдромом Клайнфельтера кариотип47, ХХУ; в

20% случаев мозаицизм.

Признак Болеют только мальчики. До периода полового созревания заболевание клинически в большинстве случаев не диагностируется. Генетические аномалии проявляются в период полового созревания в виде недоразвития семенников ивторичных половых признаков (слабый

рост волос на лице, в подмышечных впадинах и на лобке). Гипогенитализм и гипогонадизм - яички резко уменьшены в размерах. У больных нарушен сперматогенез, снижена подвижность сперматозоидов (азооспермия), либо сперматозоиды отсутствуют (аспермия). Снижен

уровень тестостерона. Больные бесплодны. Отмечается половой инфантилизм, снижено половое влечение. Для мужчин с синдромом Клайнфельтера характерны высокий рост в сочетании с евнухоидным типом строения скелета итела (широкий таз, узкие плечи). Гинекомастия (развитие грудных желез больше, чем в норме). Склонность к ожирению. Их умственное развитие нормальное или немного ниже нормы. Присутствует половойхроматин (тельце Барра).

Синдром трисомии X (мета-женщины). Описан в 1959 г.

47, XXX У лиц с женским фенотипом наблю дается одна лишняя Х-хромосома. Частота 1:1000 (1:2000) новорож денныхдевочек

Геномная мутация (анеуплоидия). Воз никает при нерас хождении хромосом в мейозе (при оогенезе). Признак. У некоторых женщин отмечаются нарушения репродуктивной функ ции (нарушения менструального цикла, вторичная аменорея, ранняя менопауза идр.). Умственное развитие обычно нормальное, иногда на нижних границах нормы (незначительное снижение интеллекта). Повышенная вероятность развития психозов ишизофрении с небла гоприятным типом течения. Два тельца Барра. При тетрасомии X (кариотип48, ХХХХ) отмечаются нарушения менструального цикла, бесплодие, ранний климакс, 3 тельца Барра.

Синдром дисомии поУ-хромосоме. (Описал в 1961 г. Садберг)

47, ХУУ У лицс мужским фенотипом наблю дается одна лишняя У-хромосома. Частота 1:840 (1:1000) новорож денных мальчиков.

Геномная мутация (анеуплоидия). Воз никает при нерас хождении хромосом в мейозе (при спер матогенезе).

Признак. Мужчины в большинстве случаев не отличаются от здоровых людей по физическому и умственному развитию. Ускорение роста в детском возрасте. Средний рост взрослых мужчин186 см. Заметных отклоне ний в половой, эндокринной системе и плодовитости нет. Высокий уровень тестостерона. Иногда склонны к аффективным реакциям. Иногда наблюдается незначительное снижение интеллекта, склон ность к агрессивным иантисоциальным поступкам.

Продолжитель ность жизни не отличается от нормы.

СиндромШерешевского-Тернера. (Описан в 1925 г. Шерешевским, в 1938 г. Терне ром)

45, Х0 Моносомия X (от сутствие одной X-хромосомы) Частота 1:2000 -1: 5000 новорожденных девочек. Геномная мутация (моносомия). Воз никает при нерас хождении хромосом в мейозе (при ооили сперматогене зе).

Только у 20% женщин, беременных плодом с кариотипом45, ХО беременность сохра няется до конца ирождается живой ребе нок. В остальных случаях происходит са мопроизвольный аборт или мертворождение.

Признаки. Болеют только жешцины. Диагноз ставят прирождении, подтвер ждают кариотипированием. У новорожденных наблюдается лимфа тический отек стоп и кистей. Характерны кожные крыловидные складки на боковых поверхностях шеи, низкий рост волос на затылке идеформация локтевых суставов. У девочек уже на первом году жиз ниотмечается отставание в росте, что становится наиболее четко за метно к9-10 годам. Жешцины с этим синдромом невысокого роста (до 145 см). Молочные железы маленькие, соски широко расставлены