Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Korshunov_Releynaya_zaschita.doc
Скачиваний:
1551
Добавлен:
06.11.2017
Размер:
5.8 Mб
Скачать
    1. Поперечные дифференциальные защиты.

На параллельных линиях, имеющих одинаковое сопротивление, применяются поперечные дифференциальные защиты: токовая поперечная дифференциальная защита (на параллельных линиях, имеющих один общий выключатель); направленная поперечная дифференциальная защита (на параллельных линиях с самостоятельными выключателями).

Принцип действия поперечных дифференциальных защит линий основан на сравнении величин и фаз токов протекающим по обеим параллельным линиям.

Действительно в нормальном нагрузочном режиме и в режимах внешнего к.з. токи в обеих линиях равны как по величине, так и по фазе (рис. 6-5). Очевидно, что в случае к.з. на одной из параллельных линий равенство токов нарушается при этом на питающем конце линий токи совпадают по фазе, а на приёмном противоположны по фазе.

Рис. 6-5. Распределение токов в параллельных линиях:

а) при нормальной нагрузке и в режиме внешнего к.з.

б) при к.з. на одной из линий.

Токовая поперечная дифференциальная защита устанавливается на параллельных линиях имеющих общий выключатель на обе линии.

При одностороннем питании линий защиты размещается только со стороны источника питания, а в сети с 2-х сторонним питанием – с обеих сторон параллельных линий.

Упрощенная принципиальная схема токовой поперечной дифференциальной защиты показана на рис. 6-6. Вторичные обмотки ТТ, установленных на каждой линии. соединяются между собой по схеме на разность токов. Параллельно вторичным обмоткам ТТ включается токовое реле типа РТ‑40.

Очевидно, что ток в реле равен разности вторичных токов ТТ первой и второй параллельных линий, т.е.:

В нормальном нагрузочном режиме, когда по линиям проходят равные по величине и фазе токи, а также в режиме внешнего к.з. первичные токи II=III, и поскольку коэффициенты трансформации ТТ защиты выбираются также одинаковыми как и в продольной дифференциальной защите, то вторичные токи также равны и ток в реле IP=0.

Практически из-за погрешностей ТТ и неравенства первичных токов II и III в реле протекает небольшой ток называемый током небаланса.

При к.з. на одной из параллельных линий (например, в точке К на линии Л1, как показано на рис. 6-6) токораспределение изменится, токи II и III не будут равны друг другу и через реле будет проходить ток равный разности вторичных токов и если этот ток будет больше тока срабатывания реле, то защита подействует на отключение выключателя обеих линий.

При внешних к.з. (на шинах приемной подстанции или за её пределами) т.е. при прохождении по линиям сквозного тока, защита работать не будет.

Рис. 6-6. Принцип действия токовой поперечной дифференциальной защиты:

а) режим нагрузки и внешнего к.з.;

б) режим к.з. на одной линии Л1.

Таким образом, токовая поперечная дифференциальная защита имеет ограниченную параллельными линиями зону действия, также как и продольная дифференциальная защиты является защитой с абсолютной селективностью и поэтому может выполняться без выдержки времени, что является её основным достоинством.

Для того чтобы токовая поперечная дифференциальная защита не подействовала неправильно при прохождении по линии тока нагрузки и тока внешнего к.з., ток срабатывания её должен быть больше максимального тока небаланса:

,

где:

Кн

-

коэффициент надёжности >1

Iнб. макс

-

максимальное значение тока небаланса при внешнем к.з.

Следует иметь ввиду, что токовая поперечная дифференциальная защита имеет так называемую «мёртвую зону» вблизи шин противоположной подстанции, которая тем меньше, чем меньше ток срабатывания защиты и чем больше ток к.з.

Действительно, если к.з. произошло на одной из линий близки шин противоположной подстанции, то величины токов II и III будут вблизи по величине, их разность может оказаться меньше тока срабатывания защиты и защита не подействует.

На линиях с односторонним питанием токовая поперечная дифференциальная защита устанавливается только со стороны источника питания, а на линиях с 2-х сторонним питанием – с обеих сторон линий.

Как отмечалось выше, недостатком поперечной дифференциальной защиты является наличие «мёртвой зоны», что требует установки дополнительной защиты от повреждений в конце защищаемых линий. В качестве такой дополнительной защиты обычно применяется МТЗ.

Направленная поперечная дифференциальная защита

Рассмотренная выше токовая поперечная дифференциальная защита не способна определять на какой из 2-х параллельных линий произошло повреждение. Это обстоятельство не имеет значение для линий присоединённых к шинам подстанции через один выключатель.

Для параллельных линий подключённых к шинам через самостоятельные выключатели применяется другая защита – направленная поперечная дифференциальная защита, которая способна выбирать и отключать только одну повреждённую линию.

Упрощённая принципиальная схема направленной поперечной дифференциальной защиты приведена на рис. 6-7. Защита состоит из пускового органа 1 (токового реле) включённого так же, как в токовой поперечной дифференциальной защите и органа направления мощности 2 (реле направления мощности) включённого на разность токов защищаемых линий и на напряжение шин питающей подстанции. Оперативный ток подаётся на защиту через последовательно соединённые блок-контакты выключателей обеих линий, для того чтобы защита автоматически выводилась из работы при отключении одной из линий во избежание её неселективного действия при сквозных (внешних) к.з.

Рис. 6-7. Принцип действия направленной поперечной дифференциальной защиты параллельных линий:

а) упрощённая принципиальная схема защиты;

б) векторная диаграмма при к.з. на линии I;

в) векторная диаграмма при к.з. на линии II.

При повреждении на линии I ток в линии II>III, и поэтому их разность, т.е. ток в реле будет иметь то же направление, как и ток в повреждённой линии I. Реле направления мощности замыкает свои контакты и отключается только повреждённая линия I.

При повреждении на линии II ток III>II и ток в реле Ip изменит своё направление на противоположное и реле направления мощности, замыкая другие контакты, обеспечит отключение повреждённой линии II.

Ток срабатывания пусковых токовых реле необходимо выбирать по двум условиям:

  1. Защита не должна ложно срабатывать от токов небаланса нормального режима и режима внешнего к.з., т.е.

Iс.з.н Iнб.макс

  1. Защита не должна ложно срабатывать от максимального тока нагрузки в режиме, когда на одном конце включены выключатели обеих линий, а на другом – только одной линии

где:

Кн

-

коэффициент надёжности, равный 1,1-1,25

Кз

-

коэффициент самозапуска электродвигателей, равный 2-3

Кв

-

коэффициент возврата токового реле, равный 0,85 для реле типа РТ-40.

Определяющим является условие, по которому получается большее значение тока срабатывания.

Направленная поперечная дифференциальная защита так же имеет «мёртвую зону» при повреждениях вблизи шин противоположной подстанции и при к.з. в этой зоне действует каскадно.

Так, при повреждении в точке (рис. 6-8) линии II вблизи шин подстанции Б токи II и III будут вблизи по величине и токораспределение будет таким как показано на рис. 6-8, а. Токи в реле будут равны:

на подстанции А:

на подстанции Б:

Рис. 6-8. Каскадное действие направленной поперечной дифференциальной защиты

а) срабатывание защиты со стороны п/ст. Б

б) срабатывание защиты со стороны п/ст. А после отключения выключателя на п/ст. Б.

Таким образом, защита на подстанции А действовать не будет, а на подстанции Б сработает и отключит выключатель повреждённой линии II. После отключения токораспределение изменится и станет таким как показано на рис. 6-8,б. Ток к.з. по линии I прекратится, а в реле защиты подстанции А ток станет равным току к.з., проходящему по линии II и защита сработает и отключит выключатель линии II на подстанции А, чем будет полностью ликвидировано к.з. на этой линии.

Участки линий вблизи шин подстанций при повреждении на которых направленная поперечная дифференциальная защита действует каскадно, называются зоной каскадного действия. Наличие зоны каскадного действия является существенным недостатком направленной поперечной дифференциальной защиты т.к. приводит к увеличению времени отключения к.з. в 2 раза.

Вторым серьёзным недостатком направленной поперечной дифференциальной защиты является наличие «мёртвой зоны» органа направления мощности при близких 3-х фазных к.з., когда напряжение, подводимое к реле, практически снижается до нуля.

Чувствительность защиты определяется по к.з. на границе зоны каскадного действия и в точке равной чувствительности. За точку равной чувствительности принимается точка к.з., в которой токи в реле дифференциальной защиты по обоим концам защищаемых линий равны. Коэффициент чувствительности должен быть не менее 2.

Выводы:

  1. Поперечные дифференциальные защиты устанавливаются на параллельных линиях: токовая поперечная дифференциальная защита – на параллельных линиях, имеющих один общий выключатель; направленная поперечная дифференциальная защита – на параллельных линиях с самостоятельными выключателями.

  2. Принцип действия поперечных дифференциальных защит основан на сравнении величин и фаз токов протекающим по обеим параллельным линиям.

  3. Поперечные дифференциальные защиты отличаются простотой, высоким быстродействием и достаточно высокой чувствительностью.

  4. Принципиальными недостатками поперечных дифференциальных защит являются необходимость вывода её из работы при отключении одной из параллельных линий, а также наличие зоны каскадного действия, что не позволяет отключать повреждения мгновенно в пределах всей линии.