Добавил:
vk.com Если у вас есть претензии, касающиеся загруженных файлов - пишите в ВК vk.com/id16798969 я отредактирую или удалю файл. Опубликованные файлы сделаны мной, и некоторыми другими студентами ФФиЖ\ИФИЯМ КемГУ (за что им выражаю огромную благодарность) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник КСЕ.doc
Скачиваний:
62
Добавлен:
08.05.2018
Размер:
3.4 Mб
Скачать

8.1.1. Пространственные диссипативные структуры

Простейшим примером пространственныx структур являются ячейки Бенара, обнаруженные им в 1900 г. Если горизонтальный слой жидкости сильно подогреть снизу, то между нижней и верхней поверхностями возникнет разность температур ΔТ = Т1 – Т2>0. При малой разности температур ниже некоторого критического значения (ΔТ<ΔТкр) подводимое снизу количество теплоты распространяется вверх путем теплопроводности, и жидкость остается неподвижной. Однако при разности температур выше критического значения (ΔТ>ΔТкр) в жидкости начинается конвекция: холодная жидкость опускается вниз, а нагретая поднимается вверх. Распределение двух противоположно направленных потоков оказывается самоорганизованным,в результате чего возникает система правильных шестиугольных ячеек.

По краям каждой ячейки жидкость опускается вниз, а в центре – поднимается вверх. Зависимость полного теплового потока в единицу времени от нижней поверхности к верхней от разности температур ΔТ имеет вид ячеек Бенара.

При ΔТ>ΔТкр состояние неподвижной теплопроводящей жидкости становится неустойчивым и вместо него наступает устойчивый режим в виде конвекционных ячеек Бенара. Обусловливается это тем, что при большой разности температур покоящаяся жидкость уже не обеспечивает перенос возросшего количества теплоты, и поэтому устанавливается новый; конвекционный режим. При переходе от докритического к сверхкритическому режиму спонтанно меняется симметрия системы, что аналогично термодинамическим фазовым переходам. Поэтому переходы в неравновесных системах часто называют кинетическими фазовыми переходами.

Как уже отмечалось, диссипативные структуры возникают лишь в сильно неравновесных многочастичных системах, состояние которых описывается нелинейными уравнениями для макроскопических величин. Для описания возникновения ячеек Бенара в жидкости используются нелинейные уравнения гидродинамики. При этом привлекаются критерии неустойчивости решений дифференциальных уравнений, установленные известным математиком А.М. Ляпуновым. Исследования показывают, что при ΔТ>=ΔТкр решение уравнений гидродинамики, соответствующее покоящейся жидкости и обычной теплопередаче, становится неустойчивым, и жидкость переходит в новый устойчивый конвекционный режим.

К числу пространственных диссипативных структур принадлежат также кольца Сатурна. Образование данной структуры (более 90 колец, различаемых современной аппаратурой) обусловлено неравновесностью вращающегося вокруг планеты вещества, притяжением его к Сатурну и взаимодействием отдельных частиц вещества между собой.

8.1.2. Временные диссипативные структуры

Примером временной диссипативной структуры является химическая система, в которой протекает так называемая реакция БелоусоваЖаботинского. Если система отклонилась от равновесия, но остается к нему близкой, то возвращение к равновесию происходит плавно, без колебаний по экспоненциальному закону. Если речь идет о стационарном состоянии, близком к равновесному, то отклонившаяся от стационарного состояния система возвращается в равновесное состояние по тому же закону.

Но вдали от равновесия, как мы видели, возникают диссипативные пространственные и временные структуры, т.е. неравновесный порядок. В ряде случаев неравновесный порядок может состоять в появлении колебаний и волн. Это особенно эффектно выглядит в химических диссипативных системах.

В 1910 г. Лотка выполнил важную теоретическую работу, в которой показал, что в открытой химической системе, далекой от равновесия, возможны колебания концентраций реагентов. В 1921 г. Брей впервые наблюдал периодическую химическую реакцию в растворе перекиси водорода Н2О2, йодноватой кислоты НIO3 и серной кислоты H2SO4. В реакции происходило периодическое выделение и поглощение йода (соответственно в восстановительной и окислительной реакциях):

2О2 + 2НIO3 → 5О2 +I2 + 6Н2О,

2О2 +I2 → 2НIO3 + 4Н2О.

Но наиболее удивительное явление – возникновение периодического изменения окраски химического раствора – наблюдал Б.Н. Белоусов в 1951 г.

В смеси лимонной кислоты, бромата калия КВrO3 и сульфата церия Ce(SO4)2, растворенной в разбавленной серной кислоте, наблюдалось строго периодическое изменение цвета жидкости с красного на синий. Колебания окраски происходили с периодом около 4 мин и продолжались до тех пор, пока не израсходуются все реагенты, т.е. пока система далека от термодинамического равновесия. В указанном явлении, по сути, проявлялось существование химических часов.

Исследования Б.Н. Белоусова вследствие принципиальной новизны своевременно не были поняты. Его статьи не принимались к опубликованию «ввиду теоретической невозможности» описываемых в них реакций. Исследования Б.Н. Белоусова были продолжены и детально развиты А.М. Жаботинским. В 1980 г. группе авторов – Б.Н. Белоусову (посмертно) и А.М. Жаботинскому с сотрудниками – была присуждена Ленинская премия «за открытие нового класса автоволновых и автоколебательных явлений».

Суть описываемого явления заключается в том, что изменение окраски определяется периодическими изменениями концентраций трехвалентного и четырехвалентного ионов церия. В упрощенной схеме реакция Белоусова—Жаботинского состоит из двух стадий. На первой стадии трехвалентный ион церия окисляется бромноватой; кислотой и превращается в четырехвалентный ион:

Се3+ → (НВrO3) → Се4+,

а на второй – Се4+ восстанавливается органическим соединением малоновой кислотой (МК) и снова превращается в трехвалентный ион:

Се4+ → (МК) → Се3+.

В результате изменения концентраций ионов церия Се3+, Се4+ наблюдается либо синий (избыток Се4+), либо красный (избыток Се3+) цвет.

Колебания концентрации Се4+ в реакции Белоусова–Жаботинского имеют вид пилообразной зависимости.

Существуют также другие нелинейные химические реакции, идущие в тонких слоях, которые приводят к образованию пространственно-временных структур, имеющих вид кольцевых или спиральных волн. Возникновение подобных структур в нелинейных химических реакциях связано с локальными флуктуациями концентраций и диффузией реагентов.

Очевидно, что в живой природе процессы самоорганизации протекают значительно сложнее, чем в неживой. Сегодня ясно, что в основе многих биологических явлений находится физика открытых систем, далеких от равновесия.