Добавил:
ilirea@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора.docx
Скачиваний:
132
Добавлен:
22.08.2018
Размер:
1.46 Mб
Скачать

Внутреннее трение (вязкость) жидкости. Формула Ньютона.

При течении реальной жидкости между слоями, перемещающимися с различной скоростью, возникают силы внутреннего трения (вязкости). Эти силы, касательные к слоям, направлены так, что ускоряют медленно движущиеся слои и замедляют быстро движущиеся.

Рассмотрим ламинарный поток вязкой жидкости по горизонтальному руслу.

Слой, “прилипший” ко дну неподвижен. По мере удаления от дна скорость жидкости увеличивается. Максимальная скорость жидкости будет у слоя, который граничит с воздухом. Сила внутреннего трения пропорциональна площади взаимодействующих слоев S и тем больше, чем больше их относительная скорость. Так как разделение на слои условно, то принято выражать силу в зависимости от изменения скорости, приходящегося на единицу длины в направлении, перпендикулярном скорости, то есть от величины , называемой градиентом скорости (grad V):

Fтр = .

- это уравнение Ньютона.

Здесь - коэффициент пропорциональности, называемый коэффициентом внутреннего трения, или динамической вязкостью. Вязкость зависит от химического состава, примесей и температуры. С повышением температуры вязкость жидкости уменьшается по закону:

.

где коэффициент А постоянен для каждой жидкости.

Единицей измерения в “СИ” является Н сек / м2 , =Па с, 1Па с = 10П = 103 сП; в СГС - дин сек/см2 , эта единица называется пуазом. 1 пз = 0,1 м  сек/м2.

Величина

,где -плотность жидкости, называется кинематической вязкостью.

Относительной вязкостью называется величина, равная

где - вязкость исследуемой жидкости, 0- вязкость стандартной жидкости.

Величина, обратная коэффициенту вязкости, называется текучестью.

Для растворов вязкость увеличивается с повышением концентрации растворенного вещества. При изучении свойств растворов иногда вводят характеристическую вязкость.

где с – концентрация растворенного вещества, отн – относительная вязкость раствора по отношению к вязкости растворителя.

Характеристическая вязкость не зависит от концентрации растворенного вещества, но связана с важными параметрами, такими как молекулярная масса, форма молекул и т. д.

Связь между характеристической вязкостью и молекулярной массой М выражается с помощью обобщенного уравнения Штаудингера:

где К – константа, характерная для данного гомологического ряда макромолекул, - величина, характеризующая степень свертывания макромолекул в растворе. Эти величины при расчете берут из таблиц.

Ньютоновские и неньютоновские жидкости.

У большинства жидкостей (вода, низкомолекулярные органические соединения, истинные растворы, расплавленные металлы и их соли) коэффициент вязкости зависит только от природы жидкости и температуры. Такие жидкости называются ньютоновскими и силы внутреннего трения, возникающие в них, подчиняются закону Ньютона.

У некоторых жидкостей, преимущественно высокомолекулярных (например, растворы полимеров) или представляющих дисперсионные системы (суспензии и эмульсии), зависит также от режима течения - давления и градиента скорости. При их увеличении вязкость жидкости уменьшается вследствие нарушения внутренней структуры потока жидкости. Их вязкость характеризуют так называемым условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (давление, скорость). Такие жидкости называются структурно вязкими или неньютоновскими.

Течение вязкой жидкости. Формула Пуазейля.

Занимаясь исследованием кровообращения, французский врач и физик Пуазейль к необходимости количественного описания процессов течения вязкой жидкости вообще. Установленные им для этого случая закономерности имеют важное значение для понимания сущности гемодинамических явлений и их количественного описания.

Пуазейль установил, что вязкость жидкости может быть определена по объему жидкости, протекающей через капиллярную трубку. Этот метод применим только к случаю ламинарного течения жидкости.

Пусть на концах вертикальной капиллярной трубки длиной l и радиусом R создана постоянная разность давлений р. Выделим внутри капилляра столбик жидкости радиусом r и высотой h. На боковую поверхность этого столбика действует сила внутреннего трения:

Если р1 и р2 – давления на верхнее и нижнее сечения соответственно, то силы давления на эти сечения будут равны:

F1=p1r2 и F2=p2r2.

Сила тяжести равна Fтяж=mgh=r2gl.

При установившемся движении жидкости, согласно Второму закону Ньютона:

Fтр+Fдавления+Fтяж=0,

Учитывая, что 12)=р, dv равно:

Интегрируем:

Постоянную интегрирования находим из условия, что при r=R скорость v=0 (слои, прилегающие непосредственно к трубе, неподвижны):

Скорость частиц жидкости в зависимости от расстояния от оси равна:

Объем жидкости, протекающий через некоторое сечение трубки в пространстве между циллиндрическими поверхностями радиусами r и r+dr за время t, определяется по формуле dV=2rdrvt или:

Полный объем жидкости, протекающей через сечение капилляра за время t:

В случае, когда пренебрегаем силой тяжести жидкости (горизонтальный капилляр), объем жидкости, протекающий через сечение капилляра выражается формулой Пуазейля:

Формулу 20 можно преобразовать: разделим обе части этого выражения на время истечения t. Слева получим объемную скорость течения жидкости Q (объем жидкости, протекающий через сечение за единицу времени). Величину 8l/ 8R4 обозначим через Х. Тогда формула 20 принимает вид:

Такая запись формулы Пуазейля (ее еще называют уравнением Гагена-Пуазейля) аналогична закону Ома для участка электрической цепи.

Можно провести аналогию между законами гидродинамики и законами протекания электрического тока по электрическим цепям. Объемная скорость течения жидкости Q является гидродинамическим аналогом силы электрического тока I. Гидродинамическим аналогом разности потенциалов 1-2 является перепад давлений Р1 - Р2. Закон Ома I = (1-2)/R имеет своим гидродинамическим аналогом формулу 20. Величина Х представляет собой гидравлическое сопротивление - аналог электрического сопротивления R.