Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика вопросы.doc
Скачиваний:
10
Добавлен:
28.10.2018
Размер:
1.38 Mб
Скачать

35. Закон Био́—Савара—Лапла́са — физический закон для определения модуля вектора магнитной индукции в любой точке магнитного поля, порождаемого постоянным электрическим током на некотором рассматриваемом участке. Был установлен экспериментально в 1820 году Био и Саваром.Лаплас проанализировал данное выражение и показал, что с его помощью путём интегрирования можно вычислить магнитное поле движущегося точечного заряда, если считать движение одной заряженной частицы током.

Закон Био́—Савара—Лапла́са играет в магнитостатике ту же роль, что и закон Кулона в электростатике, и глубоко аналогичен ему.

Пусть постоянный ток I течёт по контуру γ, находящемуся в вакууме,  — точка, в которой ищется поле, тогда индукция магнитного поля в этой точке выражается интегралом (в системе СИ)

Направление  перпендикулярно плоскости, в которой лежат вектора  и . Направление вектора магнитной индукции может быть найдено по правилу правого винта: направление вращения головки винта дает направление , если поступательное движение буравчика соответствует направлению тока в элементе. Модуль вектора  определяется выражением (в системе СИ)

Векторный потенциал даётся интегралом (в системе СИ)

Дифференциальная форма закона Био-Савара может быть представлена (в гауссовой системе единиц) в виде

где J— плотность тока. Её вывод основан непосредственно на использовании интегральной формы. Она является частным случаем уравнений Максвелла для постоянного магнитного поля в вакууме.

bНаправление силы  определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.

Модуль силы Ампера можно найти по формуле:,

где α — угол между векторами магнитной индукции и тока.

Сила dF максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции (): .

37. магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Магнитным моментом обладают элементарные частицыатомные ядраэлектронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электроновпротоновнейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина.

Магнитный момент измеряется в Ам2 или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10-3 Дж/Тл.

В случае плоского контура с электрическим током магнитный момент вычисляется как , где I — сила тока в контуре, S — площадь контура, n — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из: , где r — радиус-вектор, проведенный из начала координат до элемента длины контура 

В общем случае произвольного распределения токов в среде:, где  — плотность тока в элементе объёма dV.

Магнитное поле витка с током, или контура тока, показано рисунке (кружок с точкой означает, что в этом сечении ток направлен перпендикулярно плоскости рисунка к нам, а кружок с крестом - что ток направлен от нас). Направление линий магнитной индукции вдоль оси витка укажет магнитная стрелка, помещенная в его центре. Две противоположные стороны обтекаемой током поверхности можно сопоставить с двумя полюсами магнитной стрелки: сторону, из которой линии магнитной индукции выходят – с северным полюсом магнитной стрелки, а в которую они входят – с южным. Направление магнитного поля витка с током можно определить также по правилу правого винта: если поместить острие винта в центре витка и вращать винт в направлении тока, то его поступательное движение укажет направление линий магнитной индукции. Таким образом, существует взаимная связь направлений тока в замкнутом проводнике и его магнитного поля, их «сцепленность».

38. Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле  , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор   сонаправлен с  .

Рис. 2.17

      На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо:

      Пусть проводник l переместится параллельно самому себе на расстояние  dx. При этом совершится работа:

      Итак, Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.

      Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.

      Выведем выражение для работы по перемещению замкнутого контура с током в магнитном поле.

      Рассмотрим прямоугольный контур с током 1-2-3-4-1 (рис. 2.18). Магнитное поле направлено от нас перпендикулярно плоскости контура. Магнитный поток  , пронизывающий контур, направлен по нормали   к контуру, поэтому  .

Рис. 2.18

      Переместим этот контур параллельно самому себе в новое положение 1'-2'-3'-4'-1'. Магнитное поле в общем случае может быть неоднородным и  новый контур будет пронизан магнитным потоком  . Площадка 4-3-2'-1'-4, расположенная между старым и новым контуром, пронизывается потоком  .

      Полная работа по перемещению контура в магнитном поле равна алгебраической сумме работ, совершаемых при перемещении каждой из четырех сторон контура: где  ,   равны нулю, т.к. эти стороны не пересекают магнитного потока, при своём перемещение (очерчивают нулевую площадку).  .

   Провод 1–2 перерезает поток (  ), но движется против сил действия магнитного поля.  .

Тогда общая работа по перемещению контура  или , здесь   – это изменение магнитного потока, сцепленного с контуром.

      Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока, сцепленного с этим контуром.

 Элементарную работу по бесконечно малому перемещению контура в магнитном поле можно найти по формуле , Выражения (2.9.1) и (2.9.5) внешне тождественны, но физический смысл величины dФ различен.  Соотношение (2.9.5), выведенное нами для простейшего случая, остаётся справедливым для контура любой формы в произвольном магнитном поле. Более того, если контур неподвижен, а меняется  , то при изменении магнитного потока в контуре на величину dФ, магнитное поле совершает ту же работу 

Вращающий момент, мера внешнего воздействия, изменяющего угловую скорость вращающегося тела. равен алгебраической сумме моментов всех действующих на вращающееся тело сил относительно оси вращения. В. м. связан с угловым ускорением тела ε равенством Мвр = Iε, где I — момент инерции тела относительно оси вращения.

39. Дивергениция Магнитного поля - div B = 0, поскольку не существует "магнитных зарядов".Это означает, что в классической электродинамике невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле.

Теорема Гаусса для магнитной индукции: Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

40. Особый интерес представляет магнитное поле внутри соленоида, длина которого значительно превосходит его диаметр. Внутри такого соленоида магнитная индукция имеет повсюду одно и то же направление, параллельное оси соленоида, и значит, линии поля параллельны между собой. Измеряя каким-нибудь способом магнитную индукцию в разных точках внутри соленоида, мы можем убедиться в том, что если витки соленоида расположены равномерно, то индукция магнитного поля внутри соленоида имеет во всех точках не только одинаковое направление, но и одинаковое числовое значение. Итак, поле внутри длинного равномерно навитого соленоида однородно. В дальнейшем, говоря о поле внутри соленоида, мы всегда будем иметь в виду подобные «длинные» равномерные соленоиды и не будем обращать внимания на отступления от однородности поля в областях, близких к концам соленоида. Подобные измерения, выполненные с разными соленоидами при различной силе тока в них, показали, что магнитная индукция поля внутри длинного соленоида пропорциональна силе тока I и числу витков, приходящихся на единицу длины соленоида, т. е. величине n=N/l, где N — полное число витков соленоида, l — его длина. Таким образом, (126.1) где m0 — коэффициент пропорциональности, называемый магнитной постоянной (ср. с электрической постоянной e0, § 11). Числовое значение магнитной постоянной Впоследствии (§ 157) выяснится, что единица, в которой выражена величина m0, может быть названа «генри на метр», где генри (Гн) — единица индуктивности. Следовательно, можно написать, что (126.2) В силу своей простоты поле соленоида используется в качестве эталонного поля. Для характеристики магнитного поля, кроме магнитной индукции В, используют также векторную величину Н, называемую напряженностью магнитного поля. В случае поля в вакууме величины В и Н просто пропорциональны друг другу: (126.3) так что введение величины Н не вносит ничего нового. Однако в случае поля в веществе связь В с Н имеет вид(126.4) где m — безразмерная характеристика вещества, называемая относительной магнитной проницаемостью или просто магнитной проницаемостью вещества. При рассмотрении магнитных полей в веществе, например в железе, величина Н оказывается полезной.

44. МАГНИТОМЕХАНИЧЕСКИЕ ЯВЛЕНИЯ (гиромагнитные явления), группа явлений, обусловленных взаимосвязью магн. и механич. моментов микрочастиц — носителей магнетизма. Любая микрочастица, обладающая определ. моментом количества движения (эл-н, протон, нейтрон, ат. ядро, атом), имеет также и определ. магнитный момент. Благодаря этому увеличение суммарного момента кол-ва движения микрочастиц, образующих физ. тело (образец), приводит к возникновению у образца дополнит. магн. момента; наоборот, при намагничивании образец приобретает дополнит. механич. момент.

Увеличение магн. момента (намагниченности) в ферромагн. образцах при их вращении было обнаружено в 1909 амер. физиком С. Барнеттом (см. Барнетта эффект). Обратный эффект — поворот свободно подвешенного ферромагн. образца при его намагничивании во внеш. магн. поле открыт в 1915 в опытах А. Эйнштейна и В. де Хааза (см. Эйнштейна — де Хааза эффект). М. я. позволяют определить отношение магн. момента атома к его полному механич. моменту (гиромагнитное, или магнитомеханическое отношение) и сделать заключение о природе носителей магнетизма в разл. в-вах. Так было установлено, что в переходных Зd-металлах (Fe, Co, Ni) магн. момент обусловлен спиновыми моментами эл-нов (см. Спин). В др. в-вах (напр., редкозем. металлах) магн. момент создаётся как спиновыми, так и орбитальными моментами эл-нов. В связи с созданием новых, в первую очередь резонансных, методов исследования магнетизма (см. Магнитный резонанс) интерес к М. я. уменьшился

45. Диамагнетизм (от греч. dia… — расхождение (силовых линий), и магнетизм) — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего поля.

Диамагнетизм свойствен всем веществам. Диамагнетизм можно рассматривать как следствие индукционных токов, наводимых в заполненных электронных оболочках ионов внешним магнитным полем. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему полю (независимо от того, имелся ли первоначально собственный момент или нет и как он был ориентирован). Диамагнетизм, однако, невозможно описать с позиции только классической физики, это суть предельно квантовомеханическое явление.  Идеальный диамагнетизм носит некооперативный характер и характеризуется отрицательной, не зависящей от температуры магнитной восприимчивостью. Диамагнетизм входит в состав любого магнитного состояния вещества, но он обычно пренебрежимо мал по сравнению с магнетизмом, обусловленным наличием спонтанных магнитных моментов в системе. У чисто диамагнитных веществ электронные оболочки (молекул) не обладают постоянным моментом. Моменты, создаваемые отдельными электронами в таких в отсутствие внешнего поля взаимно скомпенсированы. В частности, это имеет место в ионах и молекулах с целиком заполненными электронными оболочками, например в инертных газах, в молекулах.

Примерами чисто диамагнитных твердых тел (диамагнетиков) в классе кристаллических металлов и диэлектриков могут служить, соответственно, Cu и NaCl, а в классе аморфных твердых тел — SiO2.

Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы .

Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.

Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.

К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород (О2), оксид азота (NO), оксид марганца (MnO), хлорное железо (FeCl2) и др.

Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).

46. Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критическойтемпературы (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое при охлаждении ниже определённой температуры приобретает магнитные свойства. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри. Поэтому ферромагнетики, наряду со многими другими магнетическими веществами, остаются, как оказалось, плохо изученными веществами до сих пор. Ферромагнитные вещества — это особый класс веществ, для которых зависимость намагниченности от напряженности магнитного поля существенно нелинейная, и эквивалентное значение магнитной восприимчивости вещества может составлять десятки и сотни тысяч.

Свойства ферромагнетиков

Ферромагнетики сильно втягиваются в область более сильного магнитного поля.

Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.

При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.

47. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем в 1831 году. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величинаэлектродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.