Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
21-40.doc
Скачиваний:
6
Добавлен:
17.12.2018
Размер:
374.78 Кб
Скачать

31.Волновая функция

Волновая функция в квантовой механике, величина, полностью описывающая состояние микрообъекта (например, электрона, протона, атома, молекулы) и вообще любой квантовой системы (например, кристалла).

Описание состояния микрообъекта с помощью В. ф. имеет статистический, т. е. вероятностный характер: квадрат абсолютного значения (модуля) В. ф. указывает значение вероятностей тех величин, от которых зависит В. ф. Например, если задана зависимость В. ф. частицы от координат ху,z и времени t, то квадрат модуля этой В. ф. определяет вероятность обнаружить частицу в момент в точке с координатами хуz. Поскольку вероятность состояния определяется квадратом В. ф., её называют также амплитудой вероятности.

В. ф. одновременно отражает и наличие волновых свойств у микрообъектов. Так, для свободной частицы с заданным импульсом р и энергией E,которой сопоставляется волна де Бройля с частотой E/h и длиной волны λ = h/p (где h — постоянная Планка), В. ф. должна быть периодична в пространстве и времени с соответствующей величиной λ и периодом Т = 1/v.

Для В. ф. справедлив суперпозиций принцип: если система может находиться в различных состояниях с В. ф. ψ1, ψ2.., то возможно и состояние с В. ф., равной сумме (и вообще любой линейной комбинации) этих В. ф. Сложение В. ф. (амплитуд вероятностей), а не вероятностей (квадратов В. ф.) принципиально отличает квантовую теорию от любой классической статистической теории (в которой справедлива теорема сложения вероятностей).

33. Уравнение Шредингера для атома водорода. Так как потенциальная функция электрона в атоме водорода имеет вид , где e — заряд электрона (и протона), r — радиус вектор, уравнение Шредингера запишется следующим образом:

Здесь ψ — волновая функция электрона в системе отсчёта протона, m — масса электрона, где  — постоянная Планка, E — полная энергия электрона,  — оператор Лапласа. Так как потенциальная функция зависит от r, а не от координат по отдельности, удобно будет записать лапласиан в сферической системе координат (r,θ,ϕ). В ней он выглядит следующим образом:

34. Квантовые числа и их физический смысл

      Как следует из решения уравнения Шредингера для атома водорода, квантовое состояние электрона в этом атоме (можно сказать и квантовое состояние атома) полностью определяется заданием трех квантовых чисел. "Задайте значения квантовых чисел, и я полностью опишу свойства атома" - так может современный физик перефразировать известное изречение Архимеда.

      Каждое из квантовых чисел принимает только целочисленные значения и определяет, то есть предсказывает результаты измерения основных физических величин в заданном квантовом состоянии атома.

      1. Главное квантовое число . Это квантовое число принимает значения

     

     и определяет полную энергию электрона в любом квантовом состоянии

     

.

(5.37)

      Можно отметить, что эти значения энергии являются собственными значениями гамильтониана (5.17a). Поэтому в связанном состоянии электрон в атоме водорода имеет дискретный энергетический спектр, лежащий в области отрицательных значений и имеющий точку сгущения .

      2. Орбитальное (азимутальное) квантовое число . В квантовых состояниях с заданным значением главного квантового числа  азимутальное квантовое число может иметь следующие значения:

     

.

      Из выводов предыдущего параграфа следует, что стационарные волновые функции , описывающие различные квантовые состояния атома, являются собственными функциями не только оператора полной энергии , но и оператора квадрата момента импульса , причем

     

.

      Следовательно, в любом квантовом состоянии атом обладает определенным значением квадрата момента импульса, причем модуль орбитального момента импульса движущегося в атоме электрона однозначно определяется орбитальным квантовым числом:

     

.

(5.38)

      Проанализируем эту формулу квантования момента импульса. Сравнивая ее с условием (5.3) квантования момента импульса движущегося электрона в теории Бора, можно заметить, что эти условия не совпадают. И дело не только в отличии числовых значений, рассчитанных по этим формулам. Принципиальное отличие этих соотношений состоит в том, что в квантовой механике возможны состояния атома с нулевым моментом импульса. Во всех -состояниях и, частности, в основном -состоянии, когда , по формуле (5.38) получаем .

      При классическом описании движения электрона в атоме по определенной траектории (орбите) в любом состоянии атом должен обладать ненулевым моментом импульса.

      Опыт подтверждает существование квантовых состояний атома с нулевыми орбитальными моментами. Следовательно, опыт подтверждает, что только отказ от классического траекторного способа описания движения электрона в атоме позволяет правильно рассчитать и предсказать свойства атома. Вероятностный способ описания движения частиц в квантовой механике является единственно правильным способом описания свойств атомных систем - таков вывод современной физики.

      Так как движущийся вокруг ядра электрон является заряженной частицей, то такое движение обуславливает протекание некоторого замкнутого тока в атоме, который можно охарактеризовать орбитальным магнитным моментом.

      В теории Бора, когда с позиции классической теории рассматривается круговое движение электрона по орбите радиуса  со скоростью , величина орбитального механического момента равна . Если время полного оборота электрона , то такому движению соответствует замкнутый ток

     

,

     который можно охарактеризовать величиной магнитного момента

     

.

     Связь механического и магнитного моментов при этом определяется гиромагнитным отношением

     

.

(5.39)

     Так как заряд электрона отрицателен, то для орбитального движения направление вектора магнитного момента  противоположно направлению вектора механического момента импульса  (рис. 5.8).

      Для расчета орбитального магнитного момента в квантовой теории следует определить пространственную плотность электрического тока  через плотность потока вероятностей  по формуле: . Плотность потока вероятности при этом можно найти по формуле (3.23), зная волновую функцию электрона в заданном квантовом состоянии атома. Точный квантовомеханический расчет гиромагнитного отношения также приводит к формуле (5.39).

Рис. 5.8.

      Итак, в любом квантовом состоянии атом водорода обладает не только механическим моментом , величина которого определяется формулой (5.38), но и магнитным моментом.

     

.

(5.40)

      Здесь универсальная постоянная

     

     служит единицей измерения магнитных моментов атомов и называется магнетоном Бора.

      Если атом переходит из одного квантового состояния в другое с испусканием (поглощением) фотона излучения, то возможны лишь такие переходы, для которых орбитальное квантовое число  изменяется на единицу. Это правило, согласно которому для оптических переходов , называется правилом отбора. Наличие такого правила отбора обусловлено тем, что электромагнитное излучение (фотон) уносит или вносит не только квант энергии, но и вполне определенный момент импульса, изменяющий орбитальное квантовое число для электрона всегда на единицу.

      3. Магнитное квантовое число . В квантовом состоянии с заданным значением орбитального квантового числа , магнитное квантовое число может принимать  различных значений из ряда

     

.

      Физический смысл магнитного квантового числа вытекает из того, что волновая функция , описывающая квантовое состояние электрона в атоме водорода, является собственной функцией оператора проекции момента импульса , причем

     

.

      Поэтому, из общих положений квантовой механики (см. раздел 3.5) следует, что проекция момента импульса электрона на выделенное в пространстве направление  может иметь только определенные значения, равные

     

.

(5.41)

      Направление  в пространстве обычно выделяется внешним полем (например, магнитным или электрическим), в котором находится атом.

      Так как формула (5.41) квантования проекции механического момента соответствует вполне определенным направлениям ориентации в пространстве вектора  (рис. 5.9), то эту формулу называют обычно формулой пространственного квантования.

      С точки зрения классического представления об электронной орбите, с учетом перпендикулярности вектора  к плоскости орбиты, соотношение (5.41) определяет возможные дискретные расположения электронных орбит в пространстве по отношению к направлению внешнего поля.

Рис. 5.9.

      Отмеченная выше связь механического и магнитного моментов атома позволяет с учетом (5.41) записать также возможные значения проекции магнитного момента атома на выделенное направление :

     

,

(5.42)

     зависящие от значения магнитного квантового числа .

36. А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относится атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

Количество протонов в ядре называется его зарядовым числом  — это число равно порядковому номеру элемента, к которому относится атом в таблице Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом  (очевидно ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]