Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все билеты.doc
Скачиваний:
17
Добавлен:
18.12.2018
Размер:
1.82 Mб
Скачать

1

1.Линию, по которой движется материальная точка в пространстве, называют траекторией.

Расстояние, пройденное телом вдоль траектории движения, -путь(S).

Перемещением материальной точки за некоторый промежуток времени называется вектор перемещения ∆r=r-r0, направленный от положения точки в начальный момент времени к ее положению в конечный момент.

Скорость материальной точки представляет собой вектор, характеризующий направление и быстроту перемещения материальной точки относительно тела отсчета.  . Величину характеризующую изменение скорости за единицу времени, называют средним ускорением

Вектор ускорения характеризует быстроту и направление изменения скорости материальной точки относительно тела отсчета.

При равноускоренном движении ускорение постоянно.

2. Электрическое поле в диэлектрической среде создается как свободными, так и связанными зарядами, так что вектор напряженности E, характеризующий результирующее поле в диэлектрике,

.

Если обозначить объемную плотность свободных зарядов , а связанных зарядов , то присутствие связанных зарядов отразится в теореме Гаусса следующим образом:

,

в дифференциальной форме, либо в интегральной форме

.

С учетом выражения (2.1)

,

откуда для вектора электрического смещения (индукции) находим

.

Последнее выражение показывает, что вектор электрической индукции учитывает поляризованность среды. Возвращаясь к соответствующим формулировкам теоремы Гаусса

,

можно видеть, что вектор электрического смещения характеризует источники электрического поля, т. е. свободные заряды, на которых этот вектор начинается и заканчивается. Так как , то . Напряженность электрического поля характеризует как свободные, так и связанные заряды, поэтому вектор напряженности терпит разрывы на границах областей, где присутствуют связанные заряды, например на границе раздела двух диэлектриков с различными .

2

1.Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и ускорение тела также постоянно изменяются по направлению, а в общем случае и по модулю.

Мгновенная скорость тела при криволинейном движении направлена в любой точке траектории по касательной к траектории в этой точке.

При криволинейном движении направление скорости тела меняется, поэтому такое движение является неравномерным, даже если модуль скорости остается постоянным.

Ускорение при криволинейном движении. Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и величина, и направление скорости.

Рис. 49. Изменение скорости при криволинейном движении.

Таким образом, в криволинейном движении всегда имеется изменение скорости, т. е. это движение происходит с ускорением. Для определения этого ускорения (по величине и направлению) требуется найти изменение скорости как вектора, т. е. требуется найти изменение величины и изменение направления скорости.

При криволинейном движении скорость направлена по касательной к траектории.

Поскольку направление скорости постоянно изменяется, то криволинейное движение - всегда движение с ускорением, в том числе, когда модуль скорости остается неизменным

В общем случае ускорение направлено под углом к скорости. Составляющая ускорения, направленная вдоль скорости, называется тангенциальным ускорением . Она характеризует изменение скорости по модулю.

Составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально) скорости, называется нормальным ускорением . Она характеризует изменение скорости по направлению.

Здесь R - радиус кривизны траектории в данной точке.

Тангенциальное и нормальное ускорение взаимноперпендикулярны, поэтому модуль полного ускорения

Направление полного ускорения определяется углом между векторам  и 

2.Законы взаимодействия неподвижных электрических зарядов изучает электростатика. Основной закон электростатики был экспериментально установлен французским физиком Шарлем Кулоном (1736—1806) в 1785 г. В опытах Кулона измерялись силы взаимодействия заряженных шаров. Опыты показали, что модуль силы  взаимодействия двух точечных неподвижных заряженных тел прямо пропорционален произведению абсолютных значений зарядов q1 и q2 и обратно пропорционален квадрату расстояния r между телами:

 . (37.1)

Сила  направлена вдоль прямой, соединяющей заряженные тела. Она является силой отталкивания при одинаковых знаках зарядов q1 и q2 и силой притяжения при разных знаках.    Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновскимвзаимодействием.

Единица электрического заряда. В международной системе за единицу заряда принят кулон (Кл).    Кулон — это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А.

  Электрическая постоянная. Коэффициент пропорциональности k в выражении закона Кулона в системе СИ равен

 . (37.2)

   Вместо коэффициента k часто используется коэффициент, называемый электрической постоянной.Электрическая постоянная связана с коэффициентом k выражением

 . (37.3)

Отсюда следует ;

.

  С использованием электрической постоянной закон Кулона имеет вид

 . (37.4)

Сохранение электрического заряда. В 1747 г. американский физик Б. Франклин установил один из фундаментальных законов природы - закон сохранения электрического заряда, физической основой которого является точное равенство величин положительного и отрицательного элементарных зарядов. Этот закон формулируется так: «Алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе». Электрически изолированной принято считать систему, через поверхность которой нет переноса зарядов.

Фундаментальным свойством электрического заряда является его релятивистская инвариантность. Это свойство тесно связано с сохранением электрического заряда и означает в широком смысле, что в любой инерциальной системе отсчета полный электрический заряд сохраняется. Или в более узком смысле, что находящиеся в различных инерциальных системах наблюдатели, измеряя электрический заряд, получают одно и то же его значение. Таким образом, электрический заряд тела не зависит от того, движется тело или покоится.

БИЛЕТ №3

  1. Движение тела по окружности является частным случаем криволинейного движения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

м

Угловая скорость измеряется в рад/с.

Угловым ускорением называется векторная величина, равная первой производной yгловой скорости по времени:

Равномерное движение материальной точки по окружности (модуль скорости аt не изменяется, но направление скорости изменяется). Полное ускорение равно

Равнопеременное движение материальной точки по окружности (модуль скорости изменяется, но v = const и направление скорости изменяется). Полное ускорение равно

  1. Принцип суперпозиции (наложения) полей

Напряженность поля системы зарядов в каждой точке равна векторной сумме напряженностей полей, которые создавал бы в этой точке каждый из зарядов в отдельности.

Для наглядного описания поля используют линии напряженности (силовые линии) вектора . Это линии, касательные к которым в каждой точке, через которую они проходят, совпадают с направлением вектора в этой точке. Силовые линии вектора начинаются на положительных зарядах, заканчиваются на отрицательных. На одном и том же рисунке большей густоте линий соответствует большее значение Е.

Напряженность поля точечного заряда q на расстоянии r от него:

В любой точке такого поля вектор направлен от заряда при q > 0 и к заряду при q < 0.

Напряженность электрического поля. Количественной характеристикой силового действия электрического поля на заряженные тела служит векторная величина E, называемая напряжённостью электрического поля.

E = F / q пр.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

Единицей измерения индукции электрического поля служит 1 Кл/ м2. Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности.

Билет 4

1.Связь линейных и угловых величин (скорости, ускорения,перемещения).

2.Напряжённость поля плоского конденсатора равняется , где .

Напряженность поля, создаваемого, бесконечной равномерно заряженной плоскостью.

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток вектора через противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом, С другой стороны по теореме Гаусса

Следовательно

но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна

В это выражение не входят координаты, следовательно электростатическое поле будет однородным, а напряженность его в любой точке поля одинакова.

БИЛЕТ 5

1. Свойство тела сохранять свою скорость неизменной, т. е. сохранять состояние покоя или равномерного прямолинейного движения при отсутствии внешних воздействий на это тело или их взаимной компенсации, называется его инертностью. Количественную меру инертности тела называют его массой. Чем более инертно тело, тем больше его масса. Масса тела, являющаяся характеристикой его инерционных и гравитационных свойств, представляет собой величину, зависящую только от самого тела и не зависящую от того, в каких именно взаимодействиях с другими телами это тело участвует. По 2-ому закону Ньютона, масса равна отношению силы, действующей на тело, к ускорению, которое ему было сообщено. В СИ масса измеряется в кг.

Силой называют векторную величину, характеризующую такое действие на данное тело других тел (или полей), которое может вызвать ускорение и деформацию тела (здесь мы имеем в виду произвольное твердое тело, а не материальную точку).В СИ измеряется в Н=Кг*м/с2

І закон Ньютона: существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на неё внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

2. Работа сил электростатического поля, совершаемая против внешних сил, равна по величине и противоположна по знаку работе внешних сил, следовательно

Не зависит от пути, а определяется только начальными и конечными точками поля.По любой замкнутой траектории равна 0.

Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L

Так как работа сил электростатического поля по замкнутому контуру равна нулю (работа сил потенциального поля), следовательно циркуляция напряженности электростатического поля по замкнутому контуру равна нулю.

Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:

- энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Разность потенциалов- величина ,численно равная работе кулоновских сил по перемещению единичного положительного заряда из первой точки во вторую. Измеряется в Вольтах.

Напряжение — разность значений потенциала в начальной и конечной точках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора системы координат!

Билет 6

1.Второй и третий законы Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил

Второй закон Ньютона в его наиболее распространённой формулировке утверждает: в инерциальных системах ускорение, приобретаемое материальной точкой (телом), прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки (тела).

В приведённой формулировке второй закон Ньютона справедлив только для скоростей, много меньших скорости света и винерциальных системах отсчёта.

Третий закон Ньютона

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

2.Энергия заряженного конденсатора. Энергия электрического поля точечных зарядов.Объемная плотность энергии электрического поля.