Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
000voprosy_k_ehkzamenu_po_oaipr_rakovcy.doc
Скачиваний:
4
Добавлен:
24.12.2018
Размер:
381.44 Кб
Скачать

Процедуры

Структура процедуры имеет следующий вид:

Procedure <имя процедуры>(формальные параметры : их тип);

Var

(локальные переменные)

begin

. . .

end;

Процедура вызывается по имени:

<имя процедуры> (фактические параметры);

Значение каждого фактического параметра при вызове процедуры передаётся формальному параметру. Временно управление передаётся процедуре. После завершения работы процедуры управление возвращается в основную программу.

Каждый формальный параметр указывается вместе со своим типом. Соответствующий ему фактический параметр указывается без типа. Между формальными и фактическими параметрами должно быть соответствие по количеству параметров, по их типу и порядку следования.

Заголовок процедуры может выглядеть так:

PROCEDURE GG(a,b,c:integer); вызываться так: GG(3,n,m)

Здесь a,b,c-формальные параметры, а 3, n, m-фактические параметры

Таким образом в процедуру передаются значения: a=3, b=n, c=m

Переменные описанные в процедуре после слова Var, являются внутренними переменными процедуры или промежуточными, они не являются данными для операций внутри процедуры и не являются результатом её выполнения, а нужны лишь для промежуточных действий. Данные и результаты описываются в круглых скобках после имени процедуры. Перед описанием переменных-результатов пишут служебное слово var.

Например:

Procedure express(a,b,c : real; var x,y:real);

Var

z : real;

begin

z:=a+ b+ c;

x:=sqr(z);

y:=sqrt(z);

end ;

Эту процедуру можно вызвать следующим образом:

express(7.6, 6.8, 9.5, x1, x2);

Формальные входные параметры a, b, c принимают значения соответствующих фактических параметров a=7.6; b=6.8; c=9.5.

При этих значениях выполняется процедура. Результатом выполнения процедуры являются x, y, которые передают свои значения соответствующим фактическим параметрам x1, y1. Таким образом в основной программе будем иметь x1=20, y1=22.

В качестве фактических параметров могут быть константы, переменные, выражения, массивы. В качестве формальных параметров могут быть только переменные(константы и выражения недопустимы).

Функции

Другой вид подпрограммы-функция-оформляется аналогично процедуре. Отличительные особенности функции: она имеет только один результат выполнения (но может иметь несколько входных параметров); результат обозначается именем функции и передаётся в основную программу. Функция оформляется в следующем виде:

Function <имя функции>(формальные параметры: тип): тип значения функции;

Var

. . .

Begin

. . .

End.

Вызывается функция по её имени с указанием фактических параметров.

Различие между процедурами и функциями

Функции - это процедуры особого характера, результатом работы которых является некоторое значение, подобное переменной. Функция, как и процедура, может иметь список параметров, следующих за именем функции в круглых скобках. Но если имя процедуры используется только для ее вызова, то с именем функции связывается ее значение. На примере сложения двух целых чисел проиллюстрируем возможности Турбо Паскаля 7.0 по оформлению программ при помощи процедур и функций, а также рассмотрим различия между этими двумя подходами.

Program ProcedureAndFunction;

Uses

Crt;

Var

a, b, SumNumbers : integer;

Procedure Summa1(Var Sum: integer; a, b : integer);

Begin

Sum:= a+b;

End;

 

Function Sum(a, b : integer) : integer;

Begin

Sum:= a+b;

End;

 

Begin

ClrScr;

a := 12;

b := 15;

Summa1(SumNumbers, a, b);

writeln ('С помощью процедуры сумма чисел равна ',SumNumbers);

writeln ('С помощью функции сумма чисел равна ',Sum(a, b));

End.

Вызов процедуры производится по ее имени. Наряду с параметрами-значениями a и b, которые подлежат сложению, в списке параметров присутствует параметр-переменная Sum, который содержит возвращаемое процедурой значение - сумму. Функция же имеет только два параметра. Это связано с тем, что само имя функции представляет собой идентификатор параметра, значение которого после окончания работы функции равно результату вычисления. Этот параметр соответствует параметру-переменной Sum процедуры. При объявлении функции ей в соответствие ставят определенный тип данных - тип возвращаемого функцией значения.

Объявление функции

Function Sum(a, b : integer) : integer;

внешне похоже на объявление переменной Sum типа integer. Тип функции объявляется следом за списком параметров - после закрывающейся скобки этого списка и двоеточия.

Если не обращать внимания на наличие списка параметров, то этот оператор выглядит как присвоение переменной SumNumbers значения переменной Sum. Компилятор, кончно же, знает, что Sum - это имя функции (т.к. определение предшествует использованию) и организует вычисления соответствующим образом. Точно так же, как константа или переменная, вызов функций может использоваться в списках параметров оператора write (см. программу), что для процедур невозможно.

Последнее отличие процедур от функций заключается в необходимости присваивания результата вычисления в теле функции переменной, имя которой совпадает с именем функции. Если такое присваивание в теле функции не выполнено, то функция не возвратит никакого результата (точнее возвратит произвольный результат).

Итак, из вышесказанного возьмите на заметку следующее:

Оформлять подпрограмму как функцию целесообразно только в том случае, если ожидается результат работы подпрограммы. Если же последовательность команд ориентирована на выполнение некоторого действия (выдача информации на экран и т.п.), целесообразно оформлять ее как процедуру.

25. Введение файлового типа в язык ПАСКАЛЬ вызвано необходимостью обеспечить возможность работы с периферийными (внешними) устройствами ЭВМ, предназначенными для ввода, вывода и хранения данных.

Файловый тип данных или файл определяет упорядоченную совокупность произвольного числа однотипных компонент.

Общее свойство массива, множества и записи заключается в том, что количество их компонент определено на этапе написания программы, тог- да как количество компонент файла в тексте программы не определяется и может быть произвольным.

Понятие файла достаточно широко. Это может быть обычный файл на диске, коммуникационный порт ЭВМ, устройство печати, клавиатура или другие устройства.

При работе с файлами выполняются операции ввода - вывода. Операция ввода означает перепись данных с внешнего устройства (из входного файла) в основную память ЭВМ, операция вывода - это пересылка данных из основной памяти на внешнее устройство (в выходной файл).

Файлы на внешних устройствах часто называют физическими файлами. Их имена определяются операционной системой. В программах на языке Паскаль имена файлов задаются с помощью строк. Например, имя файла на диске может иметь вид:

'A:LAB1.DAT'

'c:\ABC150\pr.pas'

'lab3.pas'.

Операционная система MS-DOS не делает особого различия между файлами на дисках и лентах и устройствами ЭВМ и портами коммуникаций

26.

Особое место в языке ПАСКАЛЬ занимают текстовые файлы, компоненты которых имеют символьный тип. Для описания текстовых файлов в языке определен стандартный тип Тext:

var TF1, TF2: Text;

Текстовые файлы представляют собой последовательность строк, а строки - последовательность символов. Строки имеют переменную длину, каждая строка завершается признаком конца строки.

С признаком конца строки связана функция EOLn(var T:Text):Boolean, где Т - имя текстового файла. Эта функция принимает значение TRUE, если достигнут конец строки, и значение FALSE, если конец строки не достигнут.

Для операций над текстовыми файлами, кроме перечисленных, определены также операторы обращения к процедурам:

ReadLn(T) - пропускает строку до начала следующей;

WriteLn(T) - завершает строку файла, в которую производится запись, признаком конца строки и переходит к началу следующей.

К текстовым файлам относятся стандартные файлы INPUT, OUTPUT.

Работа с этими файлами имеет особенности:

  • имена этих файлов в списках ввода - вывода не указываются;

  • применение процедур Reset, Rewrite и Close к стандартным файлам ввода - вывода запрещено;

  • для работы с файлами INPUT, OUTPUT введена разновидность функции EOLn без параметров.

27.

Блок-схемы. При блок-схемном описании алгоритм изображается геометрическими фигурами (блоками), связанными по управлению линиями (направлениями потока) со стрелками. В блоках записывается последовательность действий. Данный способ по сравнению с другими способами записи алгоритма имеет ряд преимуществ. Он наиболее нагляден: каждая операция вычислительного процесса изображается отдельной геометрической фигурой. Операции обработки данных и носители информации изображаются на схеме соответствующими блоками. Большая часть блоков по построению условно вписана в прямоугольник со сторонами а и b. Минимальное значение а равно 10 мм, увеличение а производится на число, кратное 5 мм. Размер b=1,5 мм. Для отдельных блоков допускается соотношение между а и b, равное 1:2. В пределах одной схемы рекомендуется изображать блоки одинаковых размеров. Все блоки нумеруются. Виды и назначение основных блоков приведены в таблице. Линии, соединяющие блоки и указывающие последовательность связей между ними, должны проводится параллельно линиям рамки. Стрелка в конце линии может не ставиться, если линия направлена слева направо или сверху вниз. В блок может входить несколько линий, то есть блок может являться преемником любого числа блоков. Из блока (кроме логического) может выходить только одна линия. Логический блок может иметь в качестве продолжения одни из двух блоков, и из него выходят две линии. Если на схеме имеет место слияние линий, то место пересечения выделяется точкой. В случае, когда одна линия подходит к другой и слияние их явно выражено, точку можно не ставить. Схему алгоритма следует выполнять как единое целое, однако в случае необходимости допускается обрывать линии, соединяющие блоки.

Блок-схема должна содержать все разветвления, циклы и обращения к подпрограммам, содержащиеся в программе.

28.

Массивы представляют собой ограниченную упорядоченную совокупность однотипных величин. Каждая отдельная величина называется компонентой массива. Тип компонент может быть любым, принятым в языке ПАСКАЛЬ, кроме файлового типа. Тип компонент называется базовым типом.

Вся совокупность компонент определяется одним именем. Для обозначения отдельных компонент используется конструкция, называемая переменной с индексом или с индексами:

A[5] S[k+1] B[3,5].

В качестве индекса может быть использовано выражение. Тип индексов может быть только интервальным или перечисляемым. Действительный и целый типы недопустимы. Индексы интервального типа, для которого базовым является целый тип, могут принимать отрицательные, нулевое и положительные значения.

В операторной части программы один массив может быть присвоен другому, если их типы идентичны.

Для ввода или вывода массива в список ввода или вывода помещается переменная с индексом, а операторы ввода или вывода выполняются в цикле.

Первый индекс определяет номер строки, второй - номер столбца. Двумерные массивы хранятся в памяти ЭВМ по строкам.

Инициализация массивов (присвоение начальных значений всем компонентам массивов) осуществляется двумя способами.

Первый способ - с использованием типизированных констант, например:

type Dim10= Array[1..10] of Real;

const

raM10: Dim10 = ( 0, 2.1, 4, 5.65, 6.1, 6.7, 7.2, 8, 8.7, 9.3 );

При инициализации двумерных массивов значения компонент каждого из входящих в него одномерных массивов записывается в скобках:

type Dim3x2= Array[1..3,1..2] of Integer;

const

iaM3x2: Dim3x2= ( (1, 2)

(3, 4)

(5, 6) );

Второй способ инициализации - использование разновидности процедуры FillChar:

FillChar( var V; NBytes: Word; B: Byte );

Эта процедура заполняет участок памяти однобайтовым значением. Например, для обнуления массива A[1..10] of Real можно записать:

FillChar(A, 40, 0);

или

FillChar(A, SizeOf(A), 0);

29.

Ввод и вывод

Ввод матрицы:

CONST  kol_strok=5;  kol_stolbcov=4; VAR  A:array[1..kol_strok,1..kol_stolbcov] of Real;  i,j:integer; BEGIN  for i:=1 to kol_strok do   for j:=1 to kol_stolbcov do    Read(A[i,j]); END.

CONST - слово, которое "говорит" программе, что далее будут объявлены константы kol_strok - переменная, в которой будет храниться количество строк kol_stolbcov - переменная, в которой будет храниться количество столбцов VAR - слово, которое "говорит" программе, что далее будут объявлены переменные, которые используются в программе, и их тип A - массив, содержащий kol_strok строк kol_stolbcov столбцов, состоящий из REAL (действительных чисел) i,j - INTEGER (целочисленные) переменные BEGIN - начало программы for i:=1 to kol_strok do - "для i от 1 до kol_strok делать", т.е. следующий оператор будет выполняться для i=1,2,3,...,kol_strok for j:=1 to kol_stolbcov do - "для j от 1 до kol_stolbcov делать", т.е. следующий оператор будет выполняться для j=1,2,3,...,kol_stolbcov Read(A[i,j]) - запрос на ввод значения элемента матрицы А, стоящего на пересечении i-ой строки и j-го столбца END. - конец программы Автоматическое случайное присваивание значений из промежутка [-100;100]:

CONST  kol_strok=5;  kol_stolbcov=4; VAR  A:array[1..kol_strok,1..kol_stolbcov] of integer;  i,j:integer; BEGIN  Randomize;  for i:=1 to kol_strok do   for j:=1 to kol_stolbcov do    A[i,j]:=Random(101)-Random(101); END.

Randomize; - нужно, чтобы при использовании Random получались разные значения Random(101) - случайное целое из промежутка [0;101)

Вывод матрицы:

 for i:=1 to kol_strok do   begin    for j:=1 to kol_stolbcov do     Write(A[i,j]:4:2,' ');    Writeln;   end;

Write(A[i,j]:4:2,' ') - вывод на экран элемента матрицы А, стоящего на пересечении i-ой строки и j-го столбца, 4 позиции для числа, 2 позиции после запятой и пробел Writeln - переход на следующую строку

Пример программы:

Program Primer; USES  CRT; CONST  kol_strok=5;  kol_stolbcov=4; VAR  A:array[1..kol_strok,1..kol_stolbcov] of Real;  i,j:integer; BEGIN  Writeln('Введите элемента матрицы А:');  for i:=1 to kol_strok do   for j:=1 to kol_stolbcov do    Read(A[i,j]);  ClrScr;  Writeln('Матрица А:');  for i:=1 to kol_strok do   begin    for j:=1 to kol_stolbcov do     Write(A[i,j]:4:2,' ');    Writeln;   end;  Readln; END.

30, 31

Алгоритм поиска минимального (максимального) элемента массива довольно очевиден: сначала делается предположение, что первый элемент массива является минимальным (максимальным), затем остальные элементы массива последовательно сравниваются с этим элементом. Если во время очередной проверки обнаруживается, что проверяемый элемент меньше (больше) принятого за минимальный (максимальный), то этот элемент становится минимальным (максимальным) и продолжается проверка оставшихся элементов.

32.

Признаком параметра-переменной является ключевое слово var перед описанием параметра:

var имя : тип;

Например, передача в процедуру Р параметра-переменной целого типа записывается так:

procedure P(var x : integer);

При вызове подпрограммы в область параметров копируется не значение переменной, а ее адрес, и подпрограмма через него имеет доступ к ячейке, в которой хранится переменная. Этот способ передачи параметров называется передачей по адресу. Подпрограмма работает непосредственно с переменной из вызывающей программы и, следовательно, может ее изменить.

ВНИМАНИЕ При вызове подпрограммы на месте параметра-переменной может находиться только ссылка на переменную точно того же типа.

33.

Параметры-значения всегда имеют тип, т.е. являются типизированными, в то время как все другие могут быть типизированными или нетипизированными. Кроме того, специфические правила применяются к параметрам массивам.

Файловые переменные и структурные типы, включающие файловые типы, должны всегда объявляться как параметры переменные.

Параметры переменные и параметры значения.

Параметры значения передаются как значения, в то время как параметры переменные передаются по ссылке (reference). Для пояснения различия между ними сравните две функции:

function DoubleByValue(X: Integer): Integer; // X is a value parameter

begin

X := X * 2; Result := X;

end;

function DoubleByRef(var X: Integer): Integer; // X is a variable parameter

begin

X := X * 2; Result := X;

end;

Эти функции возвращают одинаковые значения, однако вторая изменяет значение соответствующего фактического параметра:

var I, J, V, W: Integer;

begin

I := 4; V := 4;

J := DoubleByValue(I); // J = 8, I = 4

W := DoubleByRef(V); // W = 8, V = 8

end;

Даже если одна и та же переменная используется как два или более параметров, никаких копий не создается, например:

procedure AddOne(var X, Y: Integer);

begin

X := X + 1; Y := Y + 1;

end;

var I: Integer;

begin

I := 1;

AddOne(I, I); // i=3

end;

Фактический параметр, соответствующий параметру переменной, должен быть сущностью, которой можно присвоить значение: переменной, типизированной константой, разыменованным указателем, полем или индексированным именем массива.

Параметры константы.

Эти параметры подобны параметрам значениям за тем исключением, что их значения нельзя изменять в подпрограмме. Их нельзя также передавать (внутри подпрограммы) другим подпрограммам как параметры переменные. Вместе с тем, когда передается ссылка на объект (как параметр константа), свойства объекта модифицировать можно.

Использование параметров констант позволяет компилятору оптимизировать код для строковых и структурных параметров. Кроме того, это обеспечивает также защиту от непредумышленной передачи параметра другой подпрограмме в качестве параметра переменной.

34.

Формальные параметры подпрограммы указывают, с какими аргументами следует обращаться к этой подпрограмме (количество аргументов, их последовательность, типы). Они задаются в заголовке подпрограммы в виде списка, разбитого на группы. Разделителем групп является знак точка с запятой (;). В каждую группу  включаются  параметры одного типа, принадлежащие к одной  категории.

Все формальные параметры можно разбить на четыре категории:

  • параметры-значения;

  • параметры-переменные;

  • параметры-константы (используются только в версии 7.0);

  • параметры-процедуры и параметры-функции.

Для каждого формального параметра следует указать имя и, как правило, тип, а в случае параметра-переменной или параметра-константы - его категорию. Имена параметров могут быть любыми, в том числе и совпадать с именами объектов программы. Необходимо лишь помнить, что в этом случае объект основной программы с таким именем становится недоступным для непосредственного использования подпрограммой. Тип формального параметра может быть практически любым, однако в заголовке подпрограммы нельзя вводить новый тип. Например, нельзя писать

function Max( A: array[ 1..100 ] of real ): real;

Чтобы правильно записать этот заголовок, следует в основной программе ввести тип-массив, а затем использовать его в заголовке:

type tArr =array [ 1..100 ] of real; function Max ( A: tArr ) : real;

При обращении к подпрограмме формальные параметры заменяются соответствующими фактическими вызывающей программой или подпрограммой.

35.

Типы файлов Турбо Паскаль

Турбо Паскаль поддерживает три файловых типа:

  • текстовые файлы;

  • типизированные файлы;

  • нетипизированные файлы.

Доступ к файлу в программе происходит с помощью переменных файлового типа. Переменную файлового типа описывают одним из трех способов:

file of тип - типизированный файл (указан тип компоненты); text - текстовый файл; file - нетипизированный файл.

Примеры описания файловых переменных:

var

f1: file of char;

f2: file of integer;

f3: file;

t: text;

Стандартные процедуры и функции

Любые дисковые файлы становятся доступными программе после связывания их с файловой переменной, объявленной в программе. Все операции в программе производятся только с помощью связанной с ним файловой переменной.

Assign(f, FileName)

связывает файловую переменную f с физическим файлом, полное имя которого задано в строке FileName. Установленная связь будет действовать до конца работы программы, или до тех пор, пока не будет сделано переназначение.

После связи файловой переменной с дисковым именем файла в программе нужно указать направление передачи данных (открыть файл). В зависимости от этого направления говорят о чтении из файла или записи в файл.

Reset(f)

открывает для чтения файл, с которым связана файловая переменная f. После успешного выполнения процедуры Reset файл готов к чтению из него первого элемента. Процедура завершается с сообщением об ошибке, если указанный файл не найден.

Если f - типизированный файл, то процедурой reset он открывается для чтения и записи одновременно.

Rewrite(f)

открывает для записи файл, с которым связана файловая переменная f. После успешного выполнения этой процедуры файл готов к записи в него первого элемента. Если указанный файл уже существовал, то все данные из него уничтожаются.

Close(f)

закрывает открытый до этого файл с файловой переменной f. Вызов процедуры Close необходим при завершении работы с файлом. Если по какой-то причине процедура Close не будет выполнена, файл все-же будет создан на внешнем устройстве, но содержимое последнего буфера в него не будет перенесено.

EOF(f): boolean

возвращает значение TRUE, когда при чтении достигнут конец файла. Это означает, что уже прочитан последний элемент в файле или файл после открытия оказался пуст.

Rename(f, NewName)

позволяет переименовать физический файл на диске, связанный с файловой переменной f. Переименование возможно после закрытия файла.

Erase(f)

уничтожает физический файл на диске, который был связан с файловой переменной f. Файл к моменту вызова процедуры Erase должен быть закрыт.

IOResult

возвращает целое число, соответствующее коду последней ошибки ввода - вывода. При нормальном завершении операции функция вернет значение 0. Значение функции IOResult необходимо присваивать какой-либо переменной, так как при каждом вызове функция обнуляет свое значение. Функция IOResult работает только при выключенном режиме проверок ошибок ввода - вывода или с ключом компиляции {$I-}.

 

Работа с типизированными файлами

Типизированный файл - это последовательность компонент любого заданного типа (кроме типа "файл"). Доступ к компонентам файла осуществляется по их порядковым номерам. Компоненты нумеруются, начиная с 0. После открытия файла указатель (номер текущей компоненты) стоит в его начале на нулевом компоненте. После каждого чтения или записи указатель сдвигается к следующему компоненту.

Запись в файл:

Write(f, список переменных);

Процедура записывает в файл f всю информацию из списка переменных.

Чтение из файла:

Read(f, список переменных);

Процедура читает из файла f компоненты в указанные переменные. Тип файловых компонент и переменных должны совпадать. Если будет сделана попытка чтения несуществующих компонент, то произойдет ошибочное завершение программы. Необходимо либо точно рассчитывать количество компонент, либо перед каждым чтением данных делать проверку их существования (функция eof, см. выше)

Смещение указателя файла:

Seek(f, n);

Процедура смещает указатель файла f на n-ную позицию. Нумерация в файле начинается с 0.

Определение количества компонент:

FileSize(f): longint;

Функция возвращает количество компонент в файле f.

Определение позиции указателя:

FilePos(f): longint;

Функция возвращает порядковый номер текущего компонента файла f.

Отсечение последних компонент файла:

Truncate(f);

Процедура отсекает конец файла, начиная с текущей позиции включительно.

 

Работа с текстовыми файлами

Текстовый файл - это совокупность строк, разделенных метками конца строки. Сам файл заканчивается меткой конца файла. Доступ к каждой строке возможен лишь последовательно, начиная с первой. Одновременная запись и чтение запрещены.

Чтение из текстового файла:

Read(f, список переменных);

ReadLn(f, список переменных);

Процедуры читают информацию из файла f в переменные. Способ чтения зависит от типа переменных, стоящих в списке. В переменную char помещаются символы из файла. В числовую переменную: пропускаются символы-разделители, начальные пробелы и считывается значение числа до появления следующего разделителя. В переменную типа string помещается количество символов, равное длине строки, но только в том случае, если раньше не встретились символы конца строки или конца файла. Отличие ReadLn от Read в том, что в нем после прочтения данных пропускаются все оставшиеся символы в данной строке, включая метку конца строки. Если список переменных отсутствует, то процедура ReadLn(f) пропускает строку при чтении текстового файла.

Запись в текстовый файл:

Write(f, список переменных);

WriteLn(f, список переменных);

Процедуры записывают информацию в текстовый файл. Способ записи зависит от типа переменных в списке (как и при выводе на экран). Учитывается формат вывода. WriteLn от Write отличается тем, что после записи всех значений из переменных записывает еще и метку конца строки (формируется законченная строка файла).

Добавление информации к концу файла:

Append(f)

Процедура открывает текстовый файл для добавления информации к его концу. Используйте эту процедуру вместо Rewrite.

 

Работа с нетипизированными файлами

Нетипизированные файлы - это последовательность компонент произвольного типа.

Открытие нетипизированного файла:

Reset(f, BufSize)

Rewrite(f, BufSize)

Параметр BufSize задает число байтов, считываемых из файла или записываемых в него за одно обращение. Минимальное значение BufSize - 1 байт, максимальное - 64 К байт. Если BufSize не указан, то по умолчанию он принимается равным 128.

Чтение данных из нетипизированного файла:

BlockRead(f, X, Count, QuantBlock);

Эта процедура осуществляет за одно обращение чтение в переменную X количества блоков, заданное параметром Count, при этом длина блока равна длине буфера. Значение Count не может быть меньше 1. За одно обращение нельзя прочесть больше, чем 64 К байтов.

Необязательный параметр QuantBlock возвращает число блоков, прочитанных текущей операцией BlockRead. В случае успешного завершения операции чтения QuantBlock = Count, в случае аварийной ситуации параметр QuantBlock будет содержать число удачно прочитанных блоков. Отсюда следует, что с помощью параметра QuantBlock можно контролировать правильность выполнения операции чтения.

Запись данных в нетипизированный файл:

BlockWrite(f, X, Count, QuantBlock);

Эта процедура осуществляет за одно обращение запись из переменной X количества блоков, заданное параметром Count, при этом длина блока равна длине буфера.

Необязательный параметр QuantBlock возвращает число блоков, записанных успешно текущей операцией BlockWrite.

Для нетипизированных файлов можно использовать процедуры Seek, FIlePos и FileSize, аналогично соответствующим процедурам типизированных файлов.

36.

В языке Паскаль типом-множеством называется множество-степень исходного множества объектов

порядкового типа, т. е. множество всевозможных сочетаний объектов исходного множества.

Число элементов исходного множества в Turbo Pascal не может быть больше 256, а порядковые

номера элементов (т. е. значение функции Ord) должны находиться в пределах от 0 до 255.

Для задания типа-множества следует использовать зарезервированные слова set и of, а затем

указать элементы этого множества, как правило, в виде перечисления или диапазона, например:

type

Alfa = set of 'A'..'Z';

Count = set of (Plus, Minus, Mult, Divid);

Ten = set of 0..9;

Number = set of '0'..'9' ;

Введя тип-множество, можно задать переменные или типизированные константы этого

типа-множества.

При задании значений константе-множеству ее элементы перечисляются через запятую

(допустимо указывать диапазоны) и помещаются в квадратные скобки. Например, для введенных

выше типов можно задать такие переменные и типизированные константы:

var

CharVal: Alfa;

Operation: Count;

const

Index: Ten = [0, 2, 4, 6, 8];

Digit: Number = ['0'..'9'];

Примечание.

Так же как и для других структурированных типов, тип-множество можно ввести непосредственно

при задании переменных или типизированных констант:

var

CharVal: set of 'A'..'Z';

Operation: set of (Plus, Minus, Mult, Divid);

const

Index: set of 0..9 = [0, 2, 4, 6, 8];

Digit: set of '0'..'9'=['0'..'9'];

Множеству можно в программе присвоить то или иное значение. Обычно значение задается с

помощью конструктора множества. Конструктор задает множество элементов с помощью

перечисления в квадратных скобках выражений, значения которых дают элементы этого множества.

Допустимо использовать диапазоны элементов.

Пример. Следующие структуры являются конструкторами множеств:

[Plus, Minus]

[1..К mod 12, 15]

[Chr(0)..Chr(31), 'A' , 'В' ]

В каждое множество включается и т. н. пустое множество [ ], не содержащее никаких элементов.

Конструктор множества можно использовать и непосредственно в операциях над множествами.

Для множеств определены следующие операции:

+ - объединение множеств;

- - разность множеств;

* - пересечение множеств;

= - проверка эквивалентности двух множеств;

<> - проверка неэквивалентности двух множеств;

<= - проверка, является ли левое множество подмножеством правого множества;

>= - проверка, является ли правое множество подмножеством левого множества;

in - проверка, входит ли элемент, указанный слева, в множество, указанное справа.

Результатом операции объединения, разности или пересечения является соответствующее

множество, остальные операции дают результат логического типа.

37.

Запись - это структура данных, состоящая из фиксированного числа компонентов разного типа. Составляющие запись компоненты называется полями записи    Записной тип еще называют комбинированным типом.

Записной тип данных предоставляет программисту возможность объединить в одну связанную структуру различные по типу и смыслу элементы. Элементами записи могут быть и структурированные типы данных, например массивы и другие подчиненные записи. Для обработки доступна как вся запись целиком, так и отдельные ее поля.

Понятие записи рассмотрим на примере ведомости списка учащихся с их оценками. Каждая строка в этой ведомости состоит из отдельных элементов  данных различного типа: а) порядковый номер – целое десятичное число; б) Фамилия И. О. – массив символов; в) оценки – массив целых чисел.

Эти данные можно объединить в одну группу и считать записью. Введем следующие обозначения: В – имя всей записи; n – порядковый номер; fio – фамилия, имя, отчество; mark – оценки.

Обращение к элементу записи в программе выполняется с помощью уточненного (составного) имени. Уточненное имя содержит имя записи и имя элемента и записывается в следующем виде: имя записи.имя элемента

Например, B.n B.fio B.mark

Записи, как и другие данные, объявляются в разделе описаний и используются в разделе операторов.

Структура объявления типа записи такова: <имя типа> = record  <список полей> end

Здесь <имя типа> – правильный идентификатор; record, end – зарезервированные слова (запись, конец); <список полей> – последователь¬ность разделов записи, между которыми ставится точка с запятой. Каждый раздел записи состоит из одного или нескольких идентификаторов полей, отделяемых друг от друга запятыми. За идентификатором (идентификаторами) ставится двоеточие и описание типа поля (полей).

38.

Запись с вариантной частью используется для работы с объектами различной структуры как с переменными одного и того же типа. Запись с вариантной частью состоит из одного или нескольких фиксированных полей (полей фиксированного размера) и единственной вариантной части, которая должна располагаться в конце записи.

Type    Rec =record         f1: integer;         case  f2: boolean  of                  false: (f3, f4, f5: char);                  true: (f6: word)    end; Var r1, r2: rec; Вариантная часть задается предложением вида:    Case селектор_вариантов  of …  В конце вариантной части не следует ставить END как пару к CASE…OF. (Поскольку вариантная часть - всегда последняя в записи, за ней все же стоит END, но лишь как пара к RECORD). Селектор вариантов может быть именованным или неименованным, должен иметь любой порядковый тип (стандартный или пользовательский). Вариантная часть состоит из нескольких вариантов. Каждый вариант определяется константой выбора, за которой следует двоеточие и список полей данного варианта, заключенный в круглые скобки. Селектор варианта может принимать значение любой константы выбора. Особенностью вариантной части  является то, что все заданные в ней варианты “накладываются” друг на друга и используют одну и ту же область памяти. В элементе хранения конкретного объекта типа записи с вариантами всегда присутствует единственный вариант.  Таким образом,  компилятор не отводит отдельную область памяти для каждого варианта, а выделяет участок памяти, достаточный для размещения варианта самого большого размера. При использовании именованного селектора в целях дополнительного контроля следует присваивать значение селектору перед тем,  как присвоить значения полям варианта, а также проверять значение селектора перед обращением к полям варианта. Записи с вариантами применяются для описания узлов разнородных списков. Рассмотрим разнородный список, содержащий информацию о геометрических фигурах, составляющих некоторый проект. Элемент хранения узла разнородного списка содержит фиксированные поля, которые располагаются в начале записи: связь в списке, координаты точки, относительно которой строится фигура. Далее рсполагается поле селектора вариантов и поля вариантов, соответствующие трем типам геометрических фигур. Неименованный селектор вариантов используется для приведения типов (память для него в элементе хранения объекта не отводится). Объект m имеет три варианта, каждый из которых размещается в одном и том же элементе хранения размером 4 байта. В зависимости от того, к какому полю записи происходит обращение в программе, элемент хранения объекта m трактуется как массив из четырех байтов, массив из двух слов или длинное целое число.

39.

Copy(St, Index, Count)

Пример

A:=‘информатика’

D:=Copy(A,3,5)

D=‘форма

Копирует из строки St Count символов, начиная с символа с номером Index

Delete(St, Index, Count)

Пример

С:=Delete(А,5,7)

С= инфо

Удаляет Count символов из строки St начиная с символа с номером Index

Последовательность символов определенной длины называется строкой. Переменные строкового типа определяются путем указания имени переменной, зарезервированного слова string, и возможно, но не обязательно указания максимального размера, т. е. длины строки, в квадратных скобках. Если не задавать максимальный размер строки, то по умолчанию он будет равен 255, т. е. строка будет состоять из 255 символов.

К каждому элементу строки можно обратиться по его номеру. Однако ввод и вывод строк осуществляются целиком, а не поэлементно, как это происходит в массивах. Число введенных символов не должно превышать указанного в максимальном размере строки, так если такое превышение будет иметь место, то «лишние» символы будут проигнорированы.

Процедуры и функции обработки строковых величин

Insert (St1, St, N)

St1:=‘киоск’;

Insert(St1,C, 5);

С=‘инфокиоск’

Вставляет подстроку St1 в строку St начиная с символа с номером N

Length(St)

N:= Length(A)

N=11

Возвращает текущую длину строки St

Pos(St1,St)

B:=Pos(‘а’,A)

В=7

Отыскивает в строке St первое вхождение подстроки St1 и возвращает номер позиции, с которой она начинается .


SetLength(St,NewLen)

Пример

SetLength(А,7)

А=информа

Concat(S1, S2, ...,SN)

А:=Concat( 'ма’,’р’,’ка’)

А=марка

UpCase (ch)


Устанавливает новую (меньшую) длину NewLen строки St, если NewLen больше текущей длины строки, обращение к SetLength игнорируется

Возвращает строку, представляющую собой сцепление строк-параметров S1, S2, … ,

преобразует строчную букву в прописную. Обрабатывает буквы только латинского алфавита.

40.

Имена, описанные в заголовке или разделе описаний процедуры или функции называют локальными для этого блока. Имена, описанные в блоке, соответствующем всей программе, называют глобальными. Следует помнить, что формальные параметры прцедур и функций всегда являются локальными переменными для соответствующих блоков.

Основные правила работы с глобальными и локальными именами можно сформулировать так:

  • Локальные имена доступны (считаются известными, "видимыми") только внутри того блока, где они описаны. Сам этот блок, и все другие, вложенные в него, называют областью видимости для этих локальных имен.

  • Имена, описанные в одном блоке, могут совпадать с именами из других, как содержащих данный блок, так и вложенных в него. Это объясняется тем, что переменные, описанные в разных блоках (даже если они имеют одинаковые имена), хранятся в разных областях оперативной памяти.

Глобальные имена хранятся в области памяти, называемой сегментом данных (статическим сегментом) программы. Они создаются на этапе компиляции и действительны на все время работы программы.

В отличие от них, локальные переменные хранятся в специальной области памяти, которая называется стек. Они являются временными, так как создаются в момент входа в подпрограмму и уничтожаются при выходе из нее.

Имя, описанное в блоке, "закрывает" совпадающие с ним имена из блоков, содержащие данный. Это означает, что если в двух блоках, один из которых содержится внутри другого, есть переменные с одинаковыми именами, то после входа во вложенный блок работа будет идти с локальной для данного блока переменной. Пременная с тем же имнем, описанная в объемлющем блоке, становится временно недоступной и это продолжается до момента выхода из вложенного блока.

Рекомендуется все имена, которые имеют в подпрограммах чисто внутреннее, вспомогательное назначение, делать локальными. Это предохраняет от изменений глобальные объекты с такими же именами.

41.

Работа с нетипизированными файлами

Нетипизированные файлы - это последовательность компонент произвольного типа.

Открытие нетипизированного файла:

Reset(f, BufSize)

Rewrite(f, BufSize)

Параметр BufSize задает число байтов, считываемых из файла или записываемых в него за одно обращение. Минимальное значение BufSize - 1 байт, максимальное - 64 К байт. Если BufSize не указан, то по умолчанию он принимается равным 128.

Чтение данных из нетипизированного файла:

BlockRead(f, X, Count, QuantBlock);

Эта процедура осуществляет за одно обращение чтение в переменную X количества блоков, заданное параметром Count, при этом длина блока равна длине буфера. Значение Count не может быть меньше 1. За одно обращение нельзя прочесть больше, чем 64 К байтов.

Необязательный параметр QuantBlock возвращает число блоков, прочитанных текущей операцией BlockRead. В случае успешного завершения операции чтения QuantBlock = Count, в случае аварийной ситуации параметр QuantBlock будет содержать число удачно прочитанных блоков. Отсюда следует, что с помощью параметра QuantBlock можно контролировать правильность выполнения операции чтения.

Запись данных в нетипизированный файл:

BlockWrite(f, X, Count, QuantBlock);

Эта процедура осуществляет за одно обращение запись из переменной X количества блоков, заданное параметром Count, при этом длина блока равна длине буфера.

Необязательный параметр QuantBlock возвращает число блоков, записанных успешно текущей операцией BlockWrite.

Для нетипизированных файлов можно использовать процедуры Seek, FIlePos и FileSize, аналогично соответствующим процедурам типизированных файлов.

42.

Работа с типизированными файлами

Типизированный файл - это последовательность компонент любого заданного типа (кроме типа "файл"). Доступ к компонентам файла осуществляется по их порядковым номерам. Компоненты нумеруются, начиная с 0. После открытия файла указатель (номер текущей компоненты) стоит в его начале на нулевом компоненте. После каждого чтения или записи указатель сдвигается к следующему компоненту.

Запись в файл:

Write(f, список переменных);

Процедура записывает в файл f всю информацию из списка переменных.

Чтение из файла:

Read(f, список переменных);

Процедура читает из файла f компоненты в указанные переменные. Тип файловых компонент и переменных должны совпадать. Если будет сделана попытка чтения несуществующих компонент, то произойдет ошибочное завершение программы. Необходимо либо точно рассчитывать количество компонент, либо перед каждым чтением данных делать проверку их существования (функция eof, см. выше)

Смещение указателя файла:

Seek(f, n);

Процедура смещает указатель файла f на n-ную позицию. Нумерация в файле начинается с 0.

Определение количества компонент:

FileSize(f): longint;

Функция возвращает количество компонент в файле f.

Определение позиции указателя:

FilePos(f): longint;

Функция возвращает порядковый номер текущего компонента файла f.

Отсечение последних компонент файла:

Truncate(f);

Процедура отсекает конец файла, начиная с текущей позиции включительно.

43.

Экран дисплея ПК представляет собой прямоугольное поле, состоящее из большого количества точек. Дисплей может работать в текстовом и графическом режимах.

Но в отличие от текстового режима в графическом режиме имеется возможность изменять цвет каждой точки.

Чтобы сделать процесс графического программирования более эффективным, фирма Borland International разработала специализированную библиотеку Graph (в этом библиотечном модуле содержится 79 графических процедур, функций, различных стандартных констант и типов данных), набор драйверов, позволяющих работать с разными типами мониторов, и набор шрифтов для вывода на графический экран текстов разной величины и формы.

Аппаратная поддержка графики ПК обеспечивается двумя основными модулями: видеомонитором и видеоадаптером. Какой бы адаптер ни был установлен на компьютере, мы можем использовать один и тот же набор графических процедур и функций Турбо Паскаля благодаря тому, что их конечная настройка на конкретный адаптер осуществляется автоматически. Эту настройку выполняют графические драйверы.

Запуск и завершение работы в графической системе осуществляется следующим образом: 1. Подключить модуль Graph (библиотеку графических процедур): uses Graph; 2. Установить графический режим: - описываем переменные, которые определяют графический драйвер и монитор: var gd, gm: integer; - задаем команду ПК для самовыбора значений переменных: gd := Detect; (detect - драйвер сам определяет лучший режим) - инициализируем графический режим: InitGraph(gd, gm, ’указывается путь к драйверу (пусть будет пустым)’) С этого момента все графические средства доступны пользователю. 3. Завершить работу в графической системе: CloseGraph;

44.

Arc(X, Y: Integer; U1, U2, R: Word)   Строит дугу окружности X, Y — координаты центра дуги, U1 — угол до начальной точки дуги, отсчитываемый против часовой стрелки от горизонтальной оси, направленной слева направо, U2 — угол до конечной точки дуги, отсчитываемый так же, как U1, R — радиус дуги. Bar(X1, Y1, X2, Y2: Integer)   Закрашенный прямоугольник. Circle(X, Y: Integer; R: Word)   Рисует текущим цветом окружность радиуса R c центром в точке (X,Y). Ellipse(X, Y: Integer; U1, U2, XR, YR: Word)   Рисует дугу эллипса текущим цветом; X, Y — координаты центра эллипса; U1, U2 — углы до начальной и конечной точек дуги эллипса (см. процедуру Arc); XR, YR — горизонтальная и вертикальная полуоси эллипса. FillEllipse(X, Y: Integer; XR, YR: Word)   Рисует заштрихованный эллипс, используя X,Y как центр и XR,YR как горизонтальную и вертикальную полуоси эллипса. FillPoly(N: Word; Var PolyPoints)   Рисует и штрихует многоугольник, содержащий N вершин с координатами в PolyPoints. Line(X1, Y1, X2, Y2: Integer)   Рисует линию от точки X1, Y1 до точки X2,Y2. LineTo(X, Y: Integer)   Рисует линию от текущего указателя к точке X,Y. PieSlice(X, Y: Integer; U1, U2, Radius: Word)   Строит сектор круга, закрашенный текущей штриховкой и цветом заполнения. X, Y — координаты центра сектора круга; U1 и U2 — начальный и конечный углы сектора, отсчитываемые против часовой стрелки от горизонтальной оси, направленной вправо; Radius — радиус сектора. PutPixel(X, Y: Integer; Color: Word)   Выводит точку цветом Color с координатами X, Y. Rectangle(X1, Y1, X2, Y2)   Рисует контур прямоугольника, используя текущий цвет и тип линии. X1, Y1 — координаты левого верхнего угла прямоугольника, X2, Y2 — координаты правого нижнего угла прямоугольника. Sector(X, Y: Integer; U1, U2, XR, YR: Word)   Рисует и штрихует сектор эллипса радиусами XR, YR с центром в X, Y от начального угла U1 к конечному углу U2. SetBkColor(Соlor: Word)   Устанавливает цвет фона. SetFillStyle(Pattern, Color: Word)   Устанавливает образец штриховки и цвет. SetLineStyle(LineStile, Pattern, Thickness: Word)   Устанавливает толщину и стиль линии. SetViewPort(X1, Y1, X2, Y2: Integer; ClipOn: Boolean)   Устанавливает прямоугольное окно на графическом экране. Параметр ClipOn определяет "отсечку" элементов изображения, не умещающихся в окне.

45.

В Паскале имеется ряд стандартных модулей, в которых описано большое количество встроенных констант, типов, переменных и подпрограмм. Каждый модуль содержит связанные между собой ресурсы.