Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
me_7_5_3.docx
Скачиваний:
260
Добавлен:
08.02.2019
Размер:
4.23 Mб
Скачать

Решение:

Определим толщину базы. Согласно материалу, данному в лекции №21 толщина базы определяется по формуле:

где WБ – ширина базы, τБ – время пролета базы, D- коэффициент диффузии.

Если принять, что материал транзистора кремний (Si), то D=34 см2/с.

Следовательно:

Определим длину затвора полевого транзистора. Согласно материалу, данному в лекции №18 толщина базы определяется по формуле:

где LЗ – длина затвора; VS – скорость насыщения; – время пролета.

Если принять, что материал транзистора кремний (Si), то vS=105 м/с.

Следовательно:

Угол пролета определяется по формуле:

Где L – длина области взаимодействия.

У полупроводникового прибора максимальная скорость - скорость при насыщении, т.е. =м/с.

Следовательно, для биполярного транзистора:

А для полевого транзистора:

 

В последние годы заметно активизировались исследования широкозонных полупроводников (карбида кремния, нитрида галлия, нитрида алюминия и др.) и приборов на их основе. Уникальные свойства этих полупроводниковых материалов (большая ширина запрещенной зоны, высокие значения подвижности носителей заряда и их скоростей насыщения, большие коэффициенты теплопроводности и т.д.) обеспечивают создание на их основе приборов с рекордными значениями мощности, напряжения и тока.      Интенсивные исследования в области разработок полевых транзисторов на основе нитрида галлия (GaN), активно поддерживаемые военными, позволили создать промышленные образцы приборов с рекордными значениями мощности, которые предполагается использовать в современных системах связи, оборонных и космических применениях.      Наиболее перспективным широкозонным материалом в настоящее время является нитрид галлия, имеющий ширину запрещенной зоны около 3,5 эВ, подвижность и скорость насыщения электронов – около 2000 см2/В*с и 2,7*107 см/с, теплопроводность – более 1,5 Вт/м*К. Отметим далее физические свойства широкозонных полупроводниковых соединений в общем, и GaN в частности, позволяющие добиться реального улучшения характеристик приборов по сравнению с традиционными кремнием и арсенидом галлия (таблица 1).

Характеристики материала

Si

GaAs

SiC

GaN

Ширина запрещённой зоны, эВ

1,1

1,4

3,2

3,5

Критическая напряженность электрического поля, *106 В/см

0,3

0,4

3

3,3

Теплопроводность, Вт/м*K

1,5

0,5

4,9

>1,5

Подвижность электронов, см2/В*с

1350

8500

700

2000

Дрейфовая скорость насыщения электронов, *107 см/с

1,0

2,0

2,0

2,7

     Максимальная ширина запрещенной зоны (в 3 раза больше, чем у кремниевой технологии) обуславливает возможность работы транзистора при высоких уровнях температуры и радиации. Теоретически, транзисторы на основе GaN с шириной запрещенной зоны 3,5 эВ должны сохранять работоспособность при температурах до 500°С. На практике же в настоящее время максимальная температура стабильной работы транзисторов, изготовленных на подложках из карбида кремния, составляет более 200°С.      Фирма Nitronex, приложившая огромные усилия по коммерциализации GaN транзисторов на более дешевых, но менее теплопроводных кремниевых подложках (по сравнению с SiC), провела серию испытаний этих приборов на надежность при рабочей температуре 200°С. Испытания 45 приборов компании (ширина затвора Wз = 16 мм, Vси раб. = 28 В) в течение 1500 ч при температуре 200°С показали, что они могут работать с обычным воздушным охлаждением. По мере совершенствования качества эпитаксиальных структур и технологии производства рабочая температура GaN транзисторов должна быть увеличена до 350–400°С.      Рекордная удельная плотность мощности - одно из самых выдающихся достижений в области создания ВЧ GaN компонентов нового поколения. Максимальная критическая напряженность электрического поля (в 10 раз большая, чем у кремния) позволяет реализовать пробивные напряжения в 100-300 В и поднять рабочее напряжение стока до 50-100 В, что в сочетании с высокой плотностью тока обеспечивает удельную выходную мощность промышленных GaN-транзисторов 3-10 Вт на 1 миллиметр ширины затвора (до 30 Вт/мм в лабораторных образцах), что на порядок превышает удельную выходную мощность GaAs транзисторов. Высокое напряжение питания стока приводит к увеличению на порядок импеданса нагрузки стока и значительному облегчению согласования транзистора с нагрузкой.      За счет существенно большей теплопроводности как эпитаксиальных пленок, так и подложки-носителя, а также за счет втрое большей ширины запрещенной зоны в транзисторах на основе нитрида галлия достигаются большие значения мощности от одного компонента, при этом уменьшаются размеры конечных изделий и устраняется необходимость применения систем охлаждения. Сочетание высокой концентрации электронов проводимости, высокой подвижности электронов и большей ширины запрещенной зоны дает возможность GaN-транзисторам достичь существенного снижения значения сопротивления канала во включенном состоянии. По сравнению с кремниевыми приборами в силовых транзисторах на основе GaN может быть достигнуто снижение значения RDS(on) более чем на порядок в диапазоне напряжений пробоя от 100 до 300 В. Это позволит GaN-транзисторам заменить Si и даже SiC транзисторы в силовых системах, где требуются приборы с высокими значениями рабочих токов и напряжениями 1000 В и выше. Применение GaN-транзисторов позволит снизить потребление энергии в системах запуска электродвигателей, защиты электросетей от перегрузок и неожиданных отключений. Кроме того, очень высокая концентрация электронов в области двумерного электронного газа в сочетании с приемлемой подвижностью электронов дает возможность реализации большой плотности тока транзистора и высокого коэффициента усиления.       Приведенные  параметры приборов на GaN хотя и значительны, но не предельны. Это обусловлено как недостатками материалов подложки, так и несовершенством выращиваемых на них эпитаксиальных структур. Подложки для GaN должны иметь минимальное расхождение с нитридом галлия по параметрам решетки, хорошую теплопроводность для снятия тепловых ограничений и хорошие изолирующие свойства, обеспечивающие малые потери на высоких частотах. Кроме того, они должны быть доступны и технологичны в обработке, а диаметр подложек должен быть достаточно  большим, чтобы обеспечить экономически эффективное массовое производство. И, наконец, они должны быть достаточно дешевыми.      Сегодня наиболее полно этим требованиям отвечают подложки из Al2O3, SiC и Si. Однако, рассогласование по постоянной решетке Al2O3 подложки и GaN велико (14%). К тому же, теплопроводность Al2O3 подложек очень низкая (0,33 Вт/м*К), поэтому они в основном применяются при изготовлении маломощных приборов.      Подложки из кремния технологичны, поэтому очень перспективны с точки зрения экономичности производства. Они доступны, дешевы, характеризуются достаточно высокой теплопроводностью (1,5 Вт/м*К), не ограничены по диаметру пластин и легко поддаются утоньшению, что упрощает формирование в них сквозных отверстий. Но на кремниевых подложках достаточно сложно выращивать эпитаксиальные слои GaN. Это обусловлено сильным различием коэффициента теплового расширения и параметров решетки этих двух материалов. Подложки из монокристаллического SiC отвечают большинству перечисленных требований. Единственным минусом является относительная дороговизна производства и сложность в обработке. Но для решений, в которых определяющее значение имеет долговременная надежность и высокое качество, несомненно, это лучший выбор (рис.1).

     Для начала серийного производства полупроводниковых приборов на основе GaN ведущим компаниям в области твердотельной СВЧ электроники необходимо было решить ряд проблемных моментов. Среди наиболее важнейших требований - -воспроизводимость с высоким коэффициентом выхода годных изделий, долговременная стабильность параметров в заданных эксплуатационных условиях, а также относительно невысокая себестоимость. Эти параметры GaN-приборов зависят от многих факторов: структуры и уровней легирования эпитаксиальных слоев, топологии транзистора, состава слоев металлизации, типа подложки и ее теплопроводности, параметров корпуса и т.д. Появление за последние пару лет разнообразной серийной продукции говорит о том, что большинство преград так или иначе преодолено, и перед полупроводниковыми приборами на основе нитрида галлия открываются широкие производственные перспективы. Предполагаемый коммерческий успех связан с такими преимуществами GaN как:

  • Простота и дешевизна схемотехнической реализации;

  • Лёгкость получения широких полос усиления, перекрытие одним мощным транзистором нескольких частотных диапазонов;

  • Снижение энергопотребления и связанных с ним издержек;

  • Уменьшение сложности и стоимости систем охлаждения.

Монолитные интегральные схемы и устройства на основе фосфида индия (InP) представляют собой весьма перспективное решение для малосигнальных модулей систем связи, где требуется малые уровни шума. В настоящее время проводятся широкие исследования устройств различных типов на предмет возможности их интеграции внутри одной микросхемы для создания более совершенных приёмо/передающих модулей. Устройства, выполненные на подложках этого типа, демонстрируют отличные характеристики и идеально подходят для телекоммуникационных приложений. Например, HEMT-транзисторы на основе InP имеют низкий коэффициент шума, высокую выходную мощность, малое рабочее напряжение, высокий КПД и очень высокое быстродействие. HBT-транзисторы на основе InP идеально подходят для использования в малошумящих генераторах и усилителях с высокими линейностью и КПД. Всё это говорит о перспективности исследования возможности создания сверхвысокочастотного монолитного приёмо/передающего модуля на основе фосфида индия.

Чем же привлекает карбид кремния (SiC) исследователей на протяжении почти 100 лет?

Во-первых, большая, по сравнению с Si и GaAs, ширина запрещенной зоны, что означает больший диапазон рабочих температур (теоретически до ~1000°C), а также возможность создания приборов, излучающих во всем диапазоне видимого света. Во-вторых, благодаря на порядок большему значению поля пробоя SiC, по сравнению с кремнием, при одном и том же значении напряжения пробоя уровень легирования SiC-диода может быть на два порядка выше, чем кремниевого. А следовательно, его последовательное сопротивление будет меньше и в итоге удельная мощность – больше. В этом же причина высокой радиационной стойкости SiC-приборов. В-третьих, высокая теплопроводность (для поликристаллического SiC – на уровне теплопроводности меди), что упрощает проблему теплоотвода. Это свойство в сочетании с высокими допустимыми рабочими температурами и большими скоростями насыщения носителей (большие токи насыщения полевых транзисторов) делает SiC-приборы весьма перспективными для использования в силовой электронике. В-четвертых, высокая температура Дебая, определяющая температуру, при которой возникают упругие колебания кристаллической решетки (фононы) с максимальной для данного материала частотой. Температуру Дебая можно рассматривать как параметр, характеризующий термическую стабильность полупроводника. При превышении этой температуры колебания могут стать неупругими и привести к разрушению материала. В-пятых, наличие собственной (т.е. изготовленной из того же материала, что и полупроводниковая структура) подложки большого размера. Что так же, как и возможность получения SiC n- и p-типов проводимости и наличие собственного окисла (SiO2), позволят изготавливать на основе SiC любые типы полупроводниковых приборов. Таким образом, практически по всем важным критериям карбид кремния превосходит классические полупроводниковые материалы – Si и GaAs. Интересно сравнить SiC с другими широкозонными материалами. По ряду параметров, в первую очередь по уровню излучательной рекомбинации, SiC уступает нитриду галлия (GaN) и нитриду алюминия (AlN). Однако для GaN пока нет собственных подложек, а собственные подложки AlN малы и очень дороги. Эпитаксиальные пленки этих материалов выращиваются методом гетероэпитаксии на подложках из других материалов (SiC, сапфир). В результате плотность дислокаций пленок очень высока (>107 см2). Дислокации в GaN расположены перпендикулярно поверхности растущего слоя и собираются в кластеры. Выращиваемый слой имеет ячеистую (зернистую) структуру, что приводит к увеличению токов утечки p-n-структур и к их деградации с течением времени. Все это затрудняет создание высоковольтных GaN-приборов. Да и по остальным электрофизическим параметрам (скорость насыщения носителей, поле пробоя, подвижность) объемный GaN не имеет существенных преимуществ перед карбидом кремния. Принципиально недостижимое (из-за высокой вероятности излучательной рекомбинации) большое время жизни носителей заряда в GaN ограничивает применение этого материала для создания биполярных приборов. Низкая теплопроводность и меньшая температура Дебая других широкозонных полупроводниковых материалов приводят к снижению максимальной рассеваемой мощности униполярных приборов. Таким образом, в целом SiC – более перспективный материал для создания мощных приборов по сравнению с GaN и другими элементами группы АIII-N.

В одном из своих последних исследований ученые из Института фотонных наук (Institute of Photonic Sciences, ICFO) продемонстрировали, что единственным крошечным кристаллом алмаза можно управлять как оптическим ключом, переключая его в состояние, в котором он пропускает или не пропускает проходящий через него луч света лазера. Такое поведение позволило превратить нано-алмаз в оптический транзистор, способный переключаться с невероятно высокой скоростью, но самое интересное заключается в том, что этот алмазный транзистор оказался работоспособным при нормальной температуре окружающей среды. Стоит напомнить, что транзисторы являются полупроводниковыми приборами, которые способны усиливать и коммутировать электрические сигналы. Транзисторы являются ключевым компонентом практически всех современных электронных устройств, и постоянное улучшение их электрических и скоростных характеристик позволило получить высокие скорости обработки информации и огромную вычислительную мощность современных компьютерных систем. Сейчас дальнейшее развитие традиционной электроники существенно затормозилось в последнее время из-за приближения разработанных технологий к ограничениям, накладываемым фундаментальными физическими законами. Поэтому ученые пристально смотрят на другие методы передачи и обработки информации, в частности на свет, фотоны которого более слабо воздействуют с окружающей средой, нежели электроны, что позволит получить более высокий уровень интеграции и реализовать операции с квантовой информацией. Конечно, алмазный оптический транзистор, созданный учеными ICFO, является не первым созданным учеными оптическим транзистором, мы уже слышали об оптических транзисторах, управляемых единственными фотонами света, оптических транзисторах на основе одной молекулы и о других подобных разработках. Но главным недостатком оптических транзисторов предыдущего поколения является то, что они все работают только при крайне низких температурах, близких к абсолютному нулю, что существенно сужает область их практического применения. Алмазный нанокристалл, являющийся основой оптического транзистора, изготовлен не из чистого алмаза. В структуру кристаллической решетки алмаза искусственно введена примесь из атомов азота. Благодаря этой примеси алмазный кристалл очень маленьких размеров демонстрирует поведение, присущее одному единственному огромному атому, свойства которого являются устойчивыми и при комнатной температуре. И благодаря именно примесям азота ученым удалось реализовать физический механизм, который позволяет управлять взаимодействием алмазного кристалла с проходящим сквозь него светом. К сожалению, принципы работы алмазного оптического транзистора достаточно сложны. Атомы азота, заключенные в кристалле алмаза постоянно поддерживаются в возбужденном энергетическом состоянии с помощью света зеленого лазера. Переключателем оптической проводимости алмазного кристалла является свет дополнительного инфракрасного лазера, который можно модулировать с достаточно высокой частотой, которая при проведении экспериментов достигала десятков мегагерц, заставляя транзистор переключаться с такой же частотой. Несмотря на такую сложность в управлении оптическим транзистором, все это легко поддается миниатюризации, а самое главное заключается в том, что алмазный транзистор способен работать при нормальной температуре окружающей среды. Все это уже позволяет рассматривать новый алмазный оптический транзистор в качестве главного кандидата на использование в оптических схемах высокой степени интеграции для области квантовых коммуникаций и квантовой обработки информации.

Транзистор с высокой подвижностью электронов (ТВПЭHEMT) — полевой транзистор, в котором для создания канала используется контакт двух полупроводниковых материалов с различной шириной запрещенной зоны (вместо легированной области как у обычных МОП-транзисторов). Электроны, образующиеся в тонком слое N-типа, полностью перемещаются в нелегированный слой, обедняя легированный слой. Таким образом, электроны способны быстро передвигаться без столкновений с примесями в нелегированном слое. Образуется очень тонкая прослойка с большой концентрацией высокоподвижных электронов, обладающих свойствами двумерного электронного газа (ДЭГ). Сопротивление канала очень низкое, и подвижность носителей в нём высока.

Таким образом к преимуществам ТВПЭ можно отнести:

  • Высокая подвижность электронов;

  • Очень низкое сопротивление канала.

А к недостаткам инерционность затвора и подзатворный пробой.

Баллистические транзисторы — собирательное название электронных устройств, где носители тока движутся без диссипации энергии и длина свободного пробега носителей много больше размера канала транзистора. В теории эти транзисторы позволят создать высокочастотные (ТГц диапазон) интегральные схемы. 

В основе прибора – полупроводниковый материал, в котором электроны находятся в состоянии двумерного электронного газа. Внутри этого полупроводника электроны в таком состоянии движутся без столкновений с атомами примесей, которые могли бы ухудшить работу транзистора.

Модель баллистического транзистора. В зависимости от приложенного поля электрон (обозначен на схеме жёлтым шариком) будет двигаться к одному или к другому выводу, и на выходе будет получаться сигнал «1» или «0».

Принцип действия баллистического транзистора (точнее он называется баллистический транзистор с отклоняющим полем — ballistic deflection transistor, BDT) основан на отклонении электрическим полем отдельных электронов, которые перемещаются, по словам разработчиков, «будто бы в атомном бильярде».

Кроме того, как говорят создатели, преимущество BDT по сравнению с обычным транзистором в том, что нет надобности управлять электронами «грубой силой» – достаточно подтолкнуть их «на входе» в нужную сторону, а дальше они будут «бесплатно» перемещаться «за счёт инерции» в требуемом направлении.

Предложенный вариант устройства должен выделять существенно меньше тепла и работать намного быстрее. Ведь в нём происходит непрерывный поток электронов, которые не останавливаются, как это происходит в обычных давно существующих транзисторах, ведь в них именно на это тратится очень много энергии.  Также преимуществами можно отметить меньшие размеры, отсутствие дробового шума при низкой температуре, меньшая потребляемая мощность и более высокая (терагерцы) частота переключений.

Если подвести некоторый итог, то судя по всему баллистический транзистор современнее, чем ТВПЭ. Оба транзистора могут работать в терагерцовом диапазоне и в целом по характеристикам схожи, но BDT почти не имеет недостатков, в отличие от ТВПЭ.

Проведем расчет толщины высоколегированной области HEMT. Согласно параграфу 14.1.9 “Полевой транзистор с модулированным легированием канала” учебника “Григорьев А.Д., Иванов В.А., Молоковский С.И., Микроволновая электроника”, толщина высоколегированной области рассчитывается по формуле:

Диэлектрическая проницаемость для AlGaAs ε=12,9.

Тогда

Полученный результат оказался ОЧЕНЬ странным…

На рисунке выше представлены ВАХ ПТШ, изготовленных из разных материалов. Различие ВАХ обусловлено разницей в ширине запрещенной зоны и в подвижности носителей заряда.

Самой большой шириной запрещенной зоны обладает GaN, поэтому у него наибольшее значение пробивного напряжения.

Самой большой подвижностью носителей заряда обладает GaAs, благодаря чему ток стока ПТШ на его основе наибольший при некотором фиксированном напряжении сток--исток.

Самыми скромными параметрами обладает Si – самые маленькие ширина запрещенной зоны и подвижность, что и отражено на ВАХ.

Важнейшим преимуществом ПТШ, обусловившим их широкое применение в приёмных устройствах, является малый уровень шумов. Шумы ПТШ определяются основными составляющими: тепловой, фликкер-шум (обусловлен неоднородностью в проводящей среде, генерацией и рекомбинацией носителей заряда) и дробовой (беспорядочные флуктуации напряжений и токов относительно их среднего значения).

В ПТШ источником теплового шума является сопротивление канала постоянному току. На средних частотах транзистора этот источник шума является основным.

Фликкер-шум доминирует в области низких частот ( f < 1 ГГц), его интенсивность возрастает примерно обратно пропорционально. Источником этого шума являются произвольные локальные изменения электрических свойств материалов и их поверхностных состояний. Появляются также дробовые шумы токов утечки. Поэтому особое внимание уделяется совершенствованию технологии изготовления ПТШ с целью уменьшения естественных эффектов в полупроводнике и на поверхности. Применение покрытия поликристаллической плёнкой GаАs снижает шумы, улучшает

Источником дробового шума является ток утечки затвора Iт.ут. Протекая по сопротивлению канала, ток утечки добавляет свою шумовую составляющую к общим шумам транзистора. Но этот источник шума из-за малости  в полевых транзисторах всех видов не является преобладающим и его обычно не учитывают.

Кроме того, в ПТШ имеют место шумы преобразования энергии при столкновении электронов с кристаллической решеткой полупроводника и примесями (шумы генерации-рекомбинации), а также шумы междолинного рассеяния электронов, проявляющиеся только в GаАs при больших напряженностях поля.

На рисунках выше представлены зависимости коэффициента шума от напряжения затвор-исток (Uси=2 В) и затвор сток (Uзи=-0,5 В) соответственно при f=2 ГГц.

Ответ: , , ,

Соседние файлы в предмете Микроволновая электроника