Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matematika.docx
Скачиваний:
5
Добавлен:
15.04.2019
Размер:
132.07 Кб
Скачать

26.Теорема Бернулли.

Если в каждой из п независимых испытаниях вероятность р появления события А постоянно, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число п достаточно велико:

27.Предемет математической статистики.

Математическая статистика – раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдения массовых случайных явлений для выявления существующих закономерностей. Первая задача математической статистики – указать способы сбора и группировки статистических данных, полученных в результате наблюдений или в результате специально поставленных экспериментов.

Второй задачей математической статистики является разработка методов анализа статистических данных в зависимости от целей исследования. К этой задаче относятся: оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого известен; оценка зависимости случайной величины от одной или нескольких случайных величин и т.п.

Третья задача - проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого известен.

28.Генеральная и выборочная совокупность.

Генеральная совокупность – это все исходы случайного испытания, вся совокупность значений случайной величины Х или всевозможные наблюдения интересующего нас показателя. Выборочная совокупность – часть объектов генеральной совокупности, используемая для исследования.

29.Статиситическое распределение выборки.

Значение признака xi

X1

X2

Xк

Частота mi

m1

m2

mк

Статистическим распределение выборки наз. перечень вариантов и соответствующих им относительных частот:

30.Эмперическая функция распределения.

Эмперич. ф-ция распределения – ф-ция определяющая зависимость между количественными признаками и накопленными частотами. F(x)=ωx. использовать эмпирическую функцию в качестве приближения теоретической функции - функции распределения генеральной совокупности.

Свойства эмпирических функций распределения

1)

2) - неубывающая

3) - наименьших вариантов; - наибольших вариантов.

31. Графическое изображение статистического распределения

Для наглядности строят различные графики статистического распределения, в частности, полигон и гистограмму.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки . Для построения полигона частот на оси абсцисс откладывают варианты , а на оси ординат – соответствующие им частоты и соединяют точки отрезками прямых.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которой служат частичные интервалы длиною h, а высоты равны отношению . Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии (высоте) . Площадь i–го прямоугольника равна – сумме частот вариант i–о интервала, поэтому площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения . Если все значения признака выборки объема n различны, то:

.

32 Вариационный ряд Если значения признака имеют частоты соответственно, причем , то:

.

ОПР: коэф-ом вариации наз-ся процентное отношение сред. квадрат-го отклон-я к сред арифм-й

Медианой называется значение варианты находящееся в середины вариационного ряда.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]