Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответыы на билеты по математике 31-64 .docx
Скачиваний:
10
Добавлен:
17.04.2019
Размер:
399.24 Кб
Скачать

63. Производная по направлению.

Производная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.

Рассмотрим функцию   от   аргументов в окрестности точки  . Для любого единичного вектора   определим производную функции   в точке   по направлению   следующим образом:

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора  .

Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

64. Градиент.

Градиент — характеристика, показывающая направление наискорейшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой. Например, если взять высоту поверхности Земли над уровнем моря (2-мерное пространство), то её градиент в каждой точке поверхности будет показывать «в горку».

Как видно из объяснения, градиент является векторной функцией, а величина, которую он характеризует — функцией скалярной.Формально, для случая трёхмерного пространства, градиентом называется векторная функция с компонентами  , где φ — некоторая скалярная функция координат x, y, z.

Если φ — функция n переменных  , то её градиентом будет n-мерный вектор

,

компоненты которого равны частным производным φ по всем её аргументам.

Градиент обозначается gradφ или, с использованием оператора набла,  .

Из определения градиента следует, что:

Свойства:

Линейность

Правило Лейбница

  • , где   — скалярное произведение векторов   и  .

Связь с градиентом:Производную по направлению дифференциируемой по совокупности переменных функции можно рассматривать как проекцию градиента функции на это направление, или иначе, как скалярное произведение градиента на орт направления:

,

где   — орт направления. Отсюда следует, что максимальное значение в точке производная по направлению принимает, если направление совпадает с направлением градиента функции в данной точке. Также видно, что значение производной по направлению не зависит от длины вектора  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]