Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otv_na_bilety_matan.docx
Скачиваний:
11
Добавлен:
21.04.2019
Размер:
243.61 Кб
Скачать

20. Производные основных элементарных функций

21.Логарифмическое дифференцирование

Функция вида = [u(x)]v(x) называется степенно – показательной. Для вычисления ее производной (при условии, что у' существует), нужно прологарифмировать функцию по любому основанию (обычно по основанию е). Затем нужно вычислить производную полученной неявной функции.

Пример. Найти производную функции = (sinx)x

Логарифмируем функцию по основанию е:ln= x lnsinx. Дифференцируем обе части равенства по х, получаем

,

отсюда   или  .

Рассмотренный прием называется логарифмическим дифференцированием. Он применяется не только для вычисления производных степенно-показательных функций, но и в случаях, когда аналитическое выражение функции содержит несколько множителей.

22.Дифференцирование неявных и параметрически заданных функций

Под неявным заданием функции понимают задание функции в виде уравнения F(x;y)=0, не разрешенного относительно у.

Всякую явно заданную функцию у=ƒ (х) можно записать как неявно заданную уравнением ƒ(х)-у=0, но не наоборот.

Если неявная функция задана уравнением F(x; у)=0, то для нахождения производной от у по х нет необходимости разрешать уравнение относительно у: достаточно продифференцировать это уравнение по x, рассматривая при этом у как функцию х, и полученное затем уравнение разрешить относительно у'.

Производная неявной функции выражается через аргумент х и функцию у.

<< Пример 21.1

Найти производную функции у, заданную уравнением х33-3ху=0.

Решение: Функция у задана неявно. Дифференцируем по х равенство х33-3ху=0. Из полученного соотношения

2+3у2· у'-3(1· у+х· у')=0

следует, что у2у'-ху'=у-х2, т. е. у'=(у-х2)/(у2-х).

Функция, заданная параметрически

Пусть зависимость между аргументом х и функцией у задана параметрически в виде двух уравнений

где t — вспомогательная переменная, называемая параметром.

Найдем производную у'х, считая, что функции (21.1) имеют производные и что функция х=x(t) имеет обратную t=φ(х). По правилу дифференцирования обратной функции

Функцию у=ƒ(х), определяемую параметрическими уравнениями (21.1), можно рассматривать как сложную функцию у=y(t), где t=φ(х). По правилу дифференцирования сложной функции имеем: у'х=y't•t'x. С учетом равенства (21.2) получаем

Полученная формула позволяет находить производную у'х от функции заданной параметрически, не находя непосредственной зависимости у от х.

<< Пример 21.2

Пусть  

Найти у'х.

Решение: Имеем   x't=3t2,   y't=2t.   Следовательно,   у'х=2t/t2,   т. е. 

В этом можно убедиться, найдя непосредственно зависимость у от х.

Действительно,    Тогда    Отсюда  т. е.

23.Производные высших порядков

Производные высших порядков явно заданной функции

Производная у'=ƒ'(х) функции у=ƒ(х) есть также функция от х и называется производной первого порядка.

Если функция ƒ'(х) дифференцируема, то ее производная называется производной второго порядка и обозначается у"

Итак, у"=(у')'.

Производная от производной второго порядка, если она существует, называетсяпроизводной третьего порядка и обозначается у'" (или ƒ'"(х)). Итак, у'"=(y")'

Производной n-го порядка (или n-й производной) называется производная от производной  (n-1) порядка:

y(n)=(y(n-1))¢ .

Производные порядка выше первого называются производными высших порядков.

Начиная с производной четвертого порядка, производные обозначают римскими цифрами или числами в скобках (уν или у(5)— производная пятого порядка).

<< Пример 23.1

Найти производную 13-го порядка функции у=sinx.

Решение:

Производные высших порядков неявно заданной функции

Пусть функция у=ƒ(х) задана неявно в виде уравнения F(x;y)=0.

Продифференцировав это уравнение по х и разрешив полученное уравнение относительно у', найдем производную первого порядка (первую производную). Продифференцировав по х первую производную, получим вторую производую от неявной функции. В нее войдут х,у,у¢ . Подставляя уже найденное значение у' в выражение второй производной, выразим у" через х и у.

Аналогично поступаем для нахождения производной третьего (и дальше) порядка.

<< Пример 23.2

 Найти у'", если х22=1.

Решение: Дифференцируем уравнение х22-1=0 по х: 2х+2у· у¢ =0.

Отсюда у'=-х/у. Далее имеем:

(так как х22=1), следовательно,

Производные высших порядков от функций, заданных параметрически

Пусть функция у=ƒ(х) задана параметрическими уравнениями

Как известно, первая производная у'х находится по формуле (23.1)

Найдем вторую производную от функции заданной параметрически. Из определения второй производной и равенства (23.1) следует, что

Аналогично получаем

<< Пример 23.3

 Найти вторую производную функции

 

Решение: По формуле (23.1)

Тогда по формуле (23.2)

Заметим, что найти у"хх можно по преобразованной формуле (23.2):

запоминать которую вряд ли стоит.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]