Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика экзамен форма печати на тетрадных листах....docx
Скачиваний:
9
Добавлен:
22.04.2019
Размер:
8.21 Mб
Скачать

15. Закон сохранения момента импульса

Закон сохранения момента импульса - суммарный момент импульса замкнутой системы относительно неподвижной оси вращения не изменяется с течением времени.

J*w = const

Два одинаковых шара насажены на гладкий горизонтальный стержень, но которому они могут скользить. Шары сближают и соединяют нитью. Затем всю установку приводят во вращение вокруг вертикальной оси, предоставляют ее самой себе и пережигают нить. Шары, естественно, разлетаются к концам стержня. Угловая же скорость установки при этом резко уменьшается.

Опыт с шарами

Наблюдаемый эффект является прямым следствием закона сохранения момента импульса, так как данная установка ведет себя, по существу, как замкнутая, так как внешние силы компенсируют друг друга, так как силы трения в оси малы. Для количественной оценки изменения угловой скорости будем считать, что масса всей установки практически сосредоточена в шарах, а их размеры пренебрежимо малы. Тогда из равенства моментов импульса шаров относительно точки C в начальном и конечном состояниях системы

следует

Отсюда видно, что с увеличением расстояния шаров от оси вращения угловая скорость установки уменьшается обратно пропорционально квадрату этого расстояния. И наоборот, если бы уменьшалось под действием каких-либо внутренних сил, угловая скорость установки увеличивалась бы. Этот эффект имеет общий характер, и его широко используют спортсмены в своих выступлениях, например, фигуристы и гимнасты.

36. Работа перемещения заряда в электрическом поле

35.48. Машина Карно. Цикл Карно. КПД машины Карно.

16. Основное уравнение молекулярно-кинетической теории

17. Работа и мощность.

34. Теорема Остроградского – Гауса.

Мощность.

18.26.32. Применение первого начала термодинамики к изопроцессам.

33. Адиабатический процесс.

31. Уравнение волны.

19. Закон сохранения механической энергии.

20. МА́КСВЕЛЛА РАСПРЕДЕЛЕ́НИЕ

Распределение по скоростям частиц (молекул) макроскопической физической системы, находящейся в состоянии термодинамического равновесия, (в отсутствии внешнего поля, при условии, что движение частиц подчиняется законам классической механики. Установлено Дж. К. Максвеллом в 1859.

Закон Максвелла о распределении молекул идеального газа по скоростям основан на предположениях, что газ состоит из большого числа N одинаковых молекул, его температура постоянна, а молекулы совершают тепловое хаотическое движение. При этом на газ не действуют силовые поля.

Функция распределения молекул по скоростям f(v)=dN(v)/Ndv определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv и имеет смысл плотности вероятности.

Для газа, подчиняющегося классической механике, в состоянии статистического равновесия функция распределения f Максвелла по скоростям имеет вид:

f(v) =n(m/2pkT)3/2exp(-mv2/2kT),

Где m — масса молекулы, Т — абсолютная температура системы, k — постоянная Больцмана.

Значение функции распределения f(v) зависит от рода газа (от массы молекул) и от температуры.

С помощью распределения Максвелла можно вычислять средние значения скоростей молекул и любых функций этих скоростей. В частности, средняя квадратичная скорость v2 = 3kT/m, а средняя скорость молекулы v = (8kT/pm)1/2.

Распределение Максвелла не зависит от взаимодействия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно применить классическое описание.

Распределение Максвелла вытекает из Гиббса распределения канонического в том случае, когда поступательное движение частиц можно рассматривать в классическом приближении, учитывая, что распределение по скоростям не зависит от распределения по пространственным координатам. Распределение Максвелла является частным решением кинетического уравнения Больцмана для случая статистического равновесия в отсутствии внешних полей. Распределение Максвелла не зависит от характера взаимодействия частиц системы и от внешних сил и потому справедливо как для молекул газа, так и для молекул жидкостей и твердых тел. Распределение Максвелла справедливо также для случая броуновского движения частиц, взвешенных в газе или жидкости.

21. Механические колебания. Гармонические колебания.