Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Информационные технологии. Учебное пособие.doc
Скачиваний:
38
Добавлен:
24.04.2019
Размер:
2.58 Mб
Скачать
  1. Распределения параметров выборки

5.1 t – распределение Стьюдента

5.2 F-распределение Фишера–Снедекора

5.3 χ2–распределение

13t – распределение Стьюдента

Закон нормального распределения проявляется при числе признаков n > 20–30. Однако экспериментатор часто проводит ограниченное число измерений, основывает свои выводы на малых выборках. При небольшом числе наблюдений результаты обычно близки и редко появляются большие отклонения. Это легко объяснить законом нормального распределения, согласно которому вероятность появления малых отклонений больше, чем отклонений значительных. Так, вероятность отклонений, превышающих по абсолютной величине ±2σ, равна 0,05, или один случай на 20 измерений, а отклонений ± 3σ – 0,01, или один случай на 100.

Если же полевой опыт проводят, например, в 4 – 6 повторностях, то естественно ожидать, что среди показаний урожаев на параллельных делянках очень больших отклонений не будет. Поэтому стандартное отклонение , подсчитанное по малой выборке, в большинстве случаев будет меньше, чем по всей генеральной совокупности . Следовательно, в этих случаях полагаться на критерии нормального распределения в своих выводах нельзя.

С начала XX века в математической статистике стало разрабатываться новое направление, которое можно назвать статистикой малых выборок. Наибольшее практическое значение для экспериментальной работы имело открытое в 1908 г. английским статистиком и химиком В. Госсетом t–распределение, получившее название распределения Стьюдента (англ. стьюдент – студент, псевдоним В. Госсета).

Распределение t Стьюдента для выборочных средних определяется равенством:

(5.1)

Числитель формулы означает отклонение выборочной средней от средней всей совокупности , а знаменатель:

– является показателем, оценивающим величину стандартной ошибки средней выборочной совокупности.

Таким образом, величина t измеряется отклонением выборочной средней от средней совокупности , выраженным в долях ошибки выборки , принятой за единицу.

Максимумы частоты нормального и t-распределения совпадают, но форма кривой t-распределения всецело зависит от числа степеней свободы. При очень малых значениях степеней свободы она принимает вид плосковершинной кривой, причем площадь, отграниченная кривой, больше, чем при нормальном распределении, а при увеличении числа наблюдений (n > 30) распределение t приближается к нормальному и переходит в него при n = ∞.

На рисунке 1.1 представлено дифференциальное и интегральное распределение t-Стьюдента при 10 степенях свободы.

Рисунок 5.1 – Дифференциальное (слева) и интегральное (справа) распределение t–Стьюдента

Распределение t–Стьюдента имеет важное значение при работе с малыми выборками: позволяет определить доверительный интервал, накрывающий среднюю совокупности , и проверить ту или иную гипотезу относительно генеральной совокупности. При этом нет необходимости знать параметры совокупности и , достаточно иметь их оценки μ и σ для определенного объема выборки n.

13.1Проблема Беренса–Фишера

Проверка гипотезы о генеральных средних двух групп с нормальным распределением и неравными дисперсиями в математической статистике называется проблемой Беренса–Фишера и имеет в настоящее время только приближенные решения. Почему так важно требование равенства дисперсий в сравниваемых группах? Не вдаваясь в детали этой проблемы, отметим, что чем больше различаются между собой дисперсии и объемы выборок, тем сильнее отличается распределение "вычисляемого t-критерия" от распределения "t-критерия Стьюдента". При этом различную величину имеет как сам t-критерий, так и такой параметр этих распределений, как число степеней свободы. В свою очередь число степеней свободы сказывается на величине достигнутого (критического) уровня значимости (р < ...) определяемого для вычисленного значения t-критерия.

Пренебрежение исследователями, приведенными выше условиями допустимости использования t-критерия Стьюдента, приводит к существенному искажению результатов проверки гипотез о равенстве средних. Поэтому в работах, где проверка гипотез о равенстве двух средних производилась с помощью t-критерия Стьюдента, и нет упоминания критериев проверки нормальности распределения и равенства дисперсий, имеются основания предполагать некорректное использование авторами данного критерия, а стало быть, и сомнительность декларируемых ими выводов.

Другая частая ошибка – применение t–критерия Стьюдента для проверки гипотез о равенстве трех и более групповых средних. В этом случае необходимо применять так называемую общую линейную модель, реализованную в процедуре однофакторного дисперсионного анализа с фиксированными эффектами.

Рассмотрим подробнее особенности использования t–критерия Стьюдента. Наиболее часто t–критерий используется в двух случаях. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанных выборок (так называемый двухвыборочный t–критерий). В этом случае есть контрольная группа и опытная группа, состоящая из разных объектов, количество которых в группах может быть различно. Во втором же случае используется так называемый парный t–критерий, когда одна и та же группа объектов порождает числовой материал для проверки гипотез о средних. Поэтому эти выборки называют зависимыми, связанными. Например, измеряется содержание лейкоцитов у здоровых животных, а затем у тех же самых животных после облучения определенной дозой излучения. В обоих случаях должно выполняться требование нормальности распределения исследуемого признака в каждой из сравниваемых групп. Доминирование t–критерия Стьюдента в подавляющем большинстве работ отражает два важных аспекта.

Во-первых, это свидетельство того, что авторы, использующие данный критерий, не имеют необходимых знаний относительно ограничений присущих данному критерию.

Во-вторых, это говорит также и о том, что этим авторам неизвестны какие-либо альтернативы данному критерию, либо они не в состоянии ими самостоятельно воспользоваться. Можно без преувеличения сказать, что в настоящее время бездумное применение t–критерия Стьюдента в большинстве биологических работ приносит больше вреда, нежели пользы.

14F-распределение Фишера–Снедекора

Если из нормально распределенной совокупности взять две независимые выборки объемом n1 и n2 и подсчитать дисперсии и со степенями свободы ν1 = n –1 и ν2 = n2–1, то можно определить отношение дисперсий:

(5.2)

Отношение дисперсий берут таким, чтобы в числителе была большая дисперсия, и поэтому F ≥ 1.

Распределение F зависит только от числа степеней свободы ν1 и ν2 (закон F-распределения открыл Р.А. ФиLine 1530 Line 1531 Line 1532 шер). Когда две сравниваемые выборки являются случайными независимыми из общей совокупности с генеральной средней , то фактическое значение F не выйдет за определенные пределы и не превысит критическое для данных ν1 и ν2 теоретическое значение критерия F (Fфакт < Fтеор). Если генеральные параметры сравниваемых групп различны, то Fфакт > Fтеор. Теоретические значения F для 5%-ного и 1%-ного уровня значимости даны в таблице, где табулированы только правые критические точки для F ≥ 1, так как всегда принято находить отношение большей дисперсии к меньшей.

Кривые, полученные из функции распределения для всех возможных значений F, особенно при небольшом числе наблюдений, имеют асимметричную форму – длинный «хвост» больших значений и большую концентрацию малых величин F (рисунок 5.2).

Рисунок 5.2 – Дифференциальное (слева) и интегральное (справа) F-распределение Фишера–Снедекора

Отметим, что t–распределение Стьюдента является частным случаем F–распределения при числе степеней свободы ν1 = 1 и ν2 = ν, т. е. равно числу степеней свободы для распределения t. В этом случае наблюдается следующее соотношение между F и t:

(5.3)