Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Схемотехника ЭКЗАМЕН.docx
Скачиваний:
9
Добавлен:
28.04.2019
Размер:
1.34 Mб
Скачать

2. Определение триггера.Rst-триггер на элементах и-не.

Определение триггера .

Триггер - это устройство последовательного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Под действием входных сигналов триггер может переключаться из одного устойчивого состояния в другое. При этом напряжение на его выходе скачкообразно изменяется.

Как правило, триггер имеет два выхода: прямой и инверсный. Число входов зависит от структуры и функций, выполняемых триггером. По способу записи информации триггеры делят на асинхронные и синхронизируемые (тактируемые). В асинхронных триггерах информация может записываться непрерывно и определяется информационными сигналами, действующими на входах в данный момент времени. Если информация заносится в триггер только в момент действия, так называемого синхронизирующего сигнала, то такой триггер называют синхронизируемым или тактируемым. Помимо информационных входов тактируемые триггеры имеют тактовый вход синхронизации. В цифровой технике приняты следующие обозначения входов триггеров:

S - раздельный вход установки в единичное состояние (напряжение высокого уровня на прямом выходе Q);

R - раздельный вход установки в нулевое состояние (напряжение низкого уровня на прямом выходе Q);

D - информационный вход (на него подается информация, предназначенная для занесения в триггер);

C - вход синхронизации;

Т - счетный вход.

Билет№11

1. Понятие обратной связи. Идеальный операционный усилитель: свойства и правила расчета схем. Пассивные и активные фильтры низкой частоты на оу.

Понятие "обратная связь" (ОС) относится к числу распространенных, оно давно вышло за рамки узкой области техники и употребляется сейчас в широком смысле. В системах управления обратная связь используется для сравнения выходного сигнала с заданным значением и выполнения соответствующей коррекции.

Обра́тная связь в технике — это процесс, приводящий к тому, что результат функционирования какой-либо системы влияет на параметры, от которых зависит функционирование этой системы. Другими словами, на вход системы подаётся сигнал, пропорциональный её выходному сигналу (или, в общем случае, являющийся функцией этого сигнала). Часто это делается преднамеренно, чтобы повлиять на динамику функционирования системы.

Различают положительную и отрицательную обратную связь. Отрицательная обратная связь изменяет входной сигнал таким образом, чтобы противодействовать изменению выходного сигнала. Это делает систему более устойчивой к случайному изменению параметров. Положительная обратная связь, наоборот, усиливает изменение выходного сигнала. Системы с сильной положительной обратной связью проявляют тенденцию к неустойчивости, в них могут возникать незатухающие колебания, т.е. система становится генератором.

Отрица́тельная обра́тная связь (ООС) — тип обратной связи, при котором входной сигнал системы изменяется таким образом, чтобы противодействовать изменению выходного сигнала.

Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров.

Положи́тельная обра́тная связь (ПОС) — тип обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое способствует дальнейшему отклонению выходного сигнала от первоначального значения.

Положительная обратная связь ускоряет реакцию системы на изменение входного сигнала, поэтому её используют в определённых ситуациях, когда требуется быстрая реакция в ответ на изменение внешних параметров. В то же время положительная обратная связь приводит к неустойчивости и возникновению качественно новых систем, называемых генераторы (производители).

Идеальный операционный усилитель- это усилитель постоянного тока имеющий 2 входа: инвертирующий и неинвертирующий и выход и характеризуется следующими свойствами:

1)входное сопротивление равно бесконечности

2)Выходное сопротивление равно нулю

3)Коэфициент усиление равен бесконечности и бесконечной полосе частот

Правила:

  1. Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю

  1. Входы операционного усилителя ток не потребляют.

Фильтр в электронике — устройство для выделения желательных компонент спектра электрического сигнала и/или подавления нежелательных.

Фильтр ни́жних часто́т (ФНЧ) — электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (или подавляющий) частоты сигнала выше этой частоты. Степень подавления каждой частоты зависит от вида фильтра.

В отличие от него, фильтр высоких частот пропускает частоты сигнала выше частоты среза, подавляя низкие частоты.

Реализация фильтров нижних частот может быть разнообразной, включая электронные схемы, программные алгоритмы, акустические барьеры, механические системы и т. д.

Пассивные фильтры нижних частот первого порядка

Рис. 2.25

На рис.2.25 изображена схема простого RС-фильтра нижних ча­стот первого порядка. Коэффициент передачи в комплексном виде может быть выражен формулой:

Отсюда получим формулы для АЧХ  и ФЧХ (2.46)

Положив получим выражение для частоты среза ωСР

Фазовый сдвиг на этой частоте составляет – 450  . | К |  = 1 = 0 дБ на нижних частотах f << fCР . На высоких частотах f >> Р согласно формуле (2.46),  | К | ≈ 1/ (ωRC), т.е. коэффи­циент передачи обратно пропорционален частоте. При увеличении частоты в 10 раз коэффициент усиления уменьшается в 10 раз, т. е. он уменьшается на 20 дБ на дека­ду или на 6 дБ на октаву. | К |  = 1/√2 = -ЗдБ при f = fСР . Для более быстрого уменьшения коэффициента передачи можно включить n фильтров нижних частот последовательно. При последовательном соединении нескольких фильтров нижних частот частота среза приближенно определяется как

Для случая n фильтров с равными частотами среза

При частоте входного сигнала fВХ>> fСР для схемы (рис. 2.25) получим

Из 2.50 видно, что ФНЧ может выступать как интегрирующее звено. Для переменного напряжения, содержащего постоянную составляющую  выходное напряжение можно представить в виде где - среднее значение

Фильтр нижних  частот может выступать в качестве детектора средних значений. Для реализации общего подхода к описанию фильтров необходимо нормировать комплексную переменную р. (2.52)

Для фильтра рис. 2.25 получим Р = рRC и (2.53)

Использую передаточную функцию для оценки амплитуды выходного сигнала от частоты, получим

Передаточная функция ФНЧ в общем виде может быть записана в виде

где с1, с2 ,…, сn– положительные действительные коэффициенты. Порядок фильтра определяется максимальной степенью переменной Р. Для реализации фильтра необходимо разложить полином знаменателя на множители. Если среди корней полинома есть комплексные, в этом случае следует записать полином в виде произведения сомножителей второго порядка

где аi и bi– положительные действительные коэффициенты. Для нечетных порядков полинома коэффициент b1 равен нулю.

Активные фильтры нижних частот первого порядка

Простой фильтр, изображенный  на рис. 2.26, обладает недостатком: свойства фильтра зависят от нагрузки. Для устранения этого недостатка фильтр  необходимо дополнить преобразователем полного сопротивления. Схема фильтра с преобразователем полного сопротивления показана на рис. 2.27. Коэффициент передачи постоянного сигнала может быть задан выбором значений резисторов R2 и R3.

Для упрощения схемы ФНЧ можно использовать RC- цепь для обратной связи операционного усилителя. Подобный фильтр показан на рис. 2.27.

Рис. 2.26                                                              Рис. 2.27

Передаточная функция фильтра (рис. 2.27) имеет вид

Для расчета фильтра необходимо задать частоту среза fСР (ωСР), коэффициент передачи постоянного сигнала К0 (для схемы на рис. 2.27 он должен быть задан со знаком минус) и емкость конденсатора С1. Приравняв коэффициенты полученной передаточной функции коэффициентам выражения 2.56 для фильтра  первого порядка, получим