Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MATYeMATIKA_V_SOVRYeMYeNNOM_MIRYe.doc
Скачиваний:
4
Добавлен:
31.07.2019
Размер:
115.71 Кб
Скачать

Областное государственное бюджетное учреждение

Среднего профессионального образования Ульяновский медицинский колледж

Реферат

На тему: «Математики в современном мире»

Работу выполнила:

Студентка гр.26 Фк

Трофимова Анжела

Проверила:

Фомина С.А.

Ульяновск 2011

Оглавление

  1. Роль математики в современном мире. Основные этапы развития математики.........................................................................................................3

  2. Заключение…………………………………………………………………………..15.

  3. Список литературы…………………………………………………………………16

МАТЕМАТИКА В СОВРЕМЕННОМ МИРЕ

Возросшая роль математики в современном мире прежде всего сказалась в резком увеличении числа математиков. Математика перестала быть предметом занятий только академической элиты; теперь профессия математика стала одной из наиболее распространённых, привлекая к себе всё большее число одарённых людей. Значительно расширились область математических исследований и программа математического образования. Математический аппарат проник далеко за пределы собственно математики: в физику, новые отрасли техники, биологию и даже в экономику и другие социальные науки. Счётные машины и вычислительная техника способствовали появлению новых областей научных исследований, имеющих, несомненно, чрезвычайно важное (хотя и не полностью ещё осознанное) значение как для самой математики, так и для всех наук, органически связанных с ней.

Роль математики в современной жизни лучше всего можно оценить при поэтапном сравнении успехов её развития. Всего три столетия назад основы математического мышления зиждились на геометрии, унаследованной нами от древних народов и лишь незначительно продвинувшейся за два тысячелетия. Затем началось стремительное и радикальное преобразование математики. Строгий аксиоматический дедуктивный стиль геометрии уступил место интуитивному индуктивному подходу, а чисто геометрические понятия — представлениям о числе и алгебраической операции, воплощённым в аналитической геометрии и математическом анализе, а также в механике. Небольшая группа учёных, относившихся к так называемой математической аристократии, теперь стала ведущей в науке. Ко времени Великой французской революции математические науки достигли такого расцвета, что число людей, активно занимающихся научной деятельностью, значительно возросло. Появилась учебная литература, позволившая ознакомиться с новыми достижениями математики; университеты стали систематически готовить специалистов в области естественных наук и математики. Открылись новые перспективы развития человеческих знаний.

«Классическая»математика, возникшая в XVII веке, и до сей день сохраняет своё огромное значение и ведущее положение. Некоторые из самых плодотворных работ появились в результате уточнения и обобщения двух основных понятий математического анализа: понятия функции (взаимной зависимости двух или более переменных) и понятия предела, вводящего интуитивное представление о непрерывности в жёсткие рамки строгого исследования. В чрезвычайно расширившейся области современной математики мы постоянно сталкиваемся с понятиями математического анализа, в частности с теорией дифференциальных уравнений (как в обычных, так и в частных производных), — этим важнейшим инструментом исследования скорости изменения различных величин.

Для современной математики характерно закрепление достигнутых результатов в духе математической строгости. Такой подход привёл к более интенсивной разработке оснований математики, детальному выяснению структуры самой математики и смысла «существования» объектов математического мышления.

Развитие математической науки неизбежно повлекло за собой специализацию и обособление; математика оказалась под угрозой потери единства и внутренней взаимосвязи. Представители различных отраслей математики стали хуже понимать друг друга, а связь математики, с остальными науками заметно ослабла. Тем не менее благодаря молодым талантам, пользовавшимся решительной поддержкой общества, которое осознало возрастающую роль математики, были достигнуты значительные успехи, а растущий объём математических исследований повлёк за собой лавину публикаций и многочисленные конференции математиков. В связи с этим появилась настоятельная потребность в чётком понимании существа математики, её проблем и целей, а также в отыскании идей, которые смогли бы объединить людей самых различных интересов.

На вопрос «Что такое математика?» невозможно дать обстоятельный ответ на основе одних лишь только философских обобщений, семантических определений или с помощью обтекаемого газетно-журнального многословия. Так же как нельзя дать общее определение музыке или живописи: никто не может оценить эти виды искусства, не понимая, что такое ритм, гармония и строй в музыке или форма, цвет и композиция в живописи. Для понимания же сути математики ещё в большей степени необходимо подлинное проникновение в составляющие её элементы.

Принимая во внимание всё вышесказанное, можно тем не менее дать математике некоторое общее определение. Часто говорят, что цель математики — это последовательное абстрагирование, логически строгая аксиоматическая дедукция и последующее ещё более широкое обобщение. Такая характеристика содержит лишь долю правды, поскольку она ограничивается однобоким, а порой и карикатурным изображением действительности. Прежде всего математика никак не владеет монополией на абстракцию. Понятия массы, скорости, силы, напряжения, тока — всё это абстрактные идеализации физической реальности. Так что такие математические понятия, как «точка», «пространство», «число» и «функция», едва ли много более абстрактны.

Система строгой дедукции из аксиом, принятая Евклидом в его «Началах», столь длительное время оказывавшая влияние на математику, является заманчивой формой, в которую часто выкристаллизовывается конечный продукт математической мысли, поскольку это даёт возможность добиться максимального успеха в осознании и упорядочении математического содержания и в обнажении его структуры. Однако излишнее акцентирование именно этой стороны математики сбивает с правильного пути, если конструктивным элементам, индукции, воображению, а также трудноуловимому процессу мышления, называемому интуицией, отводится лишь второстепенная роль. Правда, дедуктивный метод, отправляющийся от аксиом, на первый взгляд довольно догматических, позволяет при изучении математики быстро овладеть значительными её «территориями». Однако конструктивный метод Сократа, идущий от частного к общему и избегающий догматического подхода, прокладывает независимой творческой мысли несравненно более надёжный путь.

Точно так же как дедукция должна дополняться интуицией, стремление к последовательному обобщению должно сдерживаться и уравновешиваться бережным и любовным отношением к частностям. Отдельные задачи не следует низводить до отдельных иллюстраций величественных общих теорий. В действительности же почти все они возникают из рассмотрения частных проблем, и если такие теории не служат для разъяснения и систематизации более узких частных вопросов, они не имеют смысла.

Взаимосвязь общего с частным, дедукции с конструктивным подходом, логики с воображением — именно они и составляют самую сущность живой математики. Может оказаться, что в основе какого-то конкретного достижения лежит только один из перечисленных аспектов. Однако всякое перспективное достижение, несомненно, содержит все эти аспекты. Проиллюстрируем нашу мысль следующим образным сравнением: мы стартуем с Земли (конкретная задача) и, сбросив балласт излишней информации, устремляемся на крыльях абстракции в заоблачные высоты, где в разреженной атмосфере управление и наблюдение становятся легче. Затем наступает решающее испытание — приземление; теперь нужно установить, достигнуты ли поставленные цели (что происходит снова на Земле, т.е. мы снова рассматриваем конкретную реальность, но теперь уже с новой точки зрения). Иными словами, полёт в область абстрактной общности должен исходить из конкретного и частного и завершаться конкретным и частным.

Эти положения ярко и убедительно показывают пути развития математической науки. Иоганн Кеплер с прозорливостью настоящего диагноста сумел абстрагировать из массы наблюдений Тихо Браге эллиптическую форму планетных орбит. Дальнейшее абстрагирование позволило Исааку Ньютону вывести из этой модели закон всемирного тяготения и дифференциальные уравнения механики. На этом весьма высоком уровне, уже не отягощённом математическими абстракциями, механика обрела неограниченную свободу и, снизойдя до конкретных «земных» задач, продолжала добиваться успеха за успехом в областях, лежащих далеко за пределами небесной механики, откуда она ведёт своё начало.

Подобным образом Майкл Фарадей установил в теории электромагнетизма ряд экспериментальных фактов, которые он связал воедино, дав им собственное остроумное толкование. Это позволило вскоре абстрагировать несколько математических качественных законов электромагнетизма. После того как эти законы были сформулированы для некоторых простых частных случаев, Джеймс Клерк Максвелл открыл весьма общий количественный закон, связывающий магнитные и электрические силы, а также скорости их изменения системой дифференциальных уравнений. Эти уравнения, абстрагированные и освобождённые от всего частного и конкретного, могут вначале показаться слишком недоступными для использования. Однако вскоре становится ясно, что уход Максвелла в высокие сферы абстракции проложил перед наукой путь к дальнейшему развитию по многим направлениям. Раскрытие волновой природы электромагнитных явлений на основе уравнений Максвелла вдохновило Генриха Герца на проведение эксперимента по распространению радиоволн, что, в свою очередь, привело к появлению отрасли техники совершенно нового типа и открыло перед исследователями широкие горизонты. В результате стали возникать новые направления; среди них отметим, например, ныне бурно развивающуюся науку — магнитную гидродинамику.

Нельзя сказать, что уравнение Максвелла — это продукт последовательного дедуктивного мышления. Ещё в меньшей степени его открытие может быть приписано чисто индуктивному сократовскому методу. Вернее всего было бы причислить Максвелла к тем редким умам, которые способны уловить сходство и провести параллели между весьма отдалёнными, внешне, казалось бы, совсем не связанными фактами и встать на новую, более глубокую точку зрения, объединяя явно разнородные элементы в единую систему.

В собственно математике соответствующая линия в развитии — от конкретного и частного через абстракцию снова к конкретному и частному — придаёт теории свой определённый смысл и значение. Чтобы оценить роль этого основополагающего вывода, необходимо помнить, что слова «конкретный», «абстрактный», «частный», «общий» в математике не имеют ни постоянного, ни абсолютного значения. Они относятся главным образом к рамкам нашего мышления, к уровню нашего знания и характеру математического предмета. Например, мы охотно принимаем за «конкретное» то, что уже давно стало привычным. Что же касается слов «обобщение» и «абстракция», то они описывают не статическую ситуацию или конечный результат, а живой, динамический процесс перехода от некоторого конкретного уровня к какому-то другому — «высшему».

Иногда плодотворные открытия в математике возникают совершенно неожиданно, без особых видимых усилий: новые горизонты появляются при абстрагировании от конкретного материала и раскрытии существенных по своей структуре элементов. Аксиоматика безотносительно к её евклидовой форме подразумевает именно этот процесс. Один из последних примеров плодотворного применения абстракции — это обобщение Джоном фон Нейманом и рядом других учёных «спектральной» теории Давида Гильберта, обобщение, которое и привело от частного случая «ограниченных» линейных операторов к «неограниченным» операторам.

Этот далеко идущий результат можно проследить по ряду последовательных операций абстрагирования, начавшихся с основ аналитической геометрии. Известно, что в трёхмерном пространстве с координатами x1, x2, x3 плоскости описываются линейными уравнениями, а поверхности второго порядка (сфера, эллипсоид и пр.) — квадратными уравнениями (т.е. такими, в которые неизвестные входят во второй степени). Например, уравнение, записанное в общем виде как λ1x12+ λ2x22+ λ3x32= 1, описывает поверхность второго порядка с центром в начале координат и тремя главными осями, направленными по осям координат. Для эллипсоида «коэффициенты» λ1, λ2, λ3 должны быть заданы положительными числами и соответственно равны 1/a12, 1/a22, 1/a32 — три полуоси эллипсоида. Поверхность эллипсоида составляют те и только те точки, которые удовлетворяют такому уравнению.

Следует отметить, что алгебраизация геометрии позволяет нам без особого труда перейти к пространству более чем трёх измерений, скажем, к пространству n измерений с координатами x1, x2, ..., xn. Как и ранее, плоскости в таком пространстве снова описываются линейными уравнениями, а поверхности второго порядка — уравнениями второго порядка (квадратичными формами) относительно переменных x1, x2, ..., xn. Один из важнейших результатов «линейной алгебры» состоит в том, что поверхности второго порядка могут быть приведены к «каноническому» виду

λ1x12+ λ2x22+ ... + λnxn2= 1

при помощи соответствующего преобразования системы координат (или, что то же самое, при движении рассматриваемой поверхности и фигуры); в результате центр фигуры оказывается в начале координат, а её главные оси направлены по осям координат. Эта теорема является ключевой во многих приложениях, например в теории механических или электрических систем, в которых n материальных точек или n электрических величин могут колебаться относительно положения равновесия.

Некоторые физики, не думая о строгом математическом обосновании, например лорд Рэлей, смело применяли этот вывод и для значительно более общих случаев, когда число измерений становится сколь угодно большим. Такой шаг на пути к дальнейшему обобщению и абстракции элементарной математики оказался весьма полезным при изучении колебательных систем, в которых точечные массы или элементы электрической цепи не заданы конечным числам, а равномерно распределены, скажем, по струне, мембране или линии электрической передачи.

Гильберт, один из величайших математиков старшего поколения, понял, что подобным квадратичным формам от бесконечно большого числа переменных следует предоставить должное место и в общей математической теории. При попытке сделать это он прежде всего обнаружил, что нужно ограничить область переменных требованием, чтобы сумма их квадратов «сходилась», т.е. принимала конечное значение. Это утверждение можно сформулировать, пользуясь также терминами «обобщённой» теоремы Пифагора. Тогда ограничение Гильберта сводилось к требованию, чтобы всякая точка гильбертова пространства была удалена от начала координат на конечное расстояние

 

 

 

 r

 x

2 1

x

2 2

+ ...

 .

Далее Гильберт ввёл квадратичную форму от бесконечно большого числа переменных — бесконечную двойную сумму

 a11 x1+

 a12 xx2 

 + a13 xx3 

 + ... +

 +

 a22 x22

 + a23 xx3 

 + ... ,

где индекс первой переменной в каждом слагаемом (т.е. переменной x1 в первой строке, переменной x2 во второй и т.д.) стремится к бесконечности при переходе от одной строки к другой, а индекс второй переменной (т.е. x2 в первом столбце, x3 — во втором и т.д.) стремится к бесконечности вдоль каждой строки. Эта бесконечная сумма подчинена решающему ограничению: она должна сходиться во всякой точке гильбертова пространства.

Оказывается, что в таком пространстве многие понятия из геометрии конечного числа измерений, относящиеся к свойствам плоскостей и поверхностей второго порядка, сохраняют свою силу. Именно так, в частности, обстоит дело с приведением квадратичных форм к каноническому виду (или, как говорят ещё, к главным осям). Гильберт показал, что любая квадратичная форма указанного вида может быть приведена к каноническому виду соответствующим вращением системы координат. По аналогии со случаем конечного числа измерений Гильберт назвал набор значений λ1, λ2, λ3, ..., появляющихся в этом каноническом виде, «спектром» квадратичной формы.

Обобщая теорию главных осей обычных квадратичных форм конечного числа переменных на случай их бесконечного числа, Гильберт открыл также много новых явлений, например, возникновение непрерывного «математического спектра». Более того, работы Гильберта сыграли немаловажную роль при возникновении квантовой механики. Его термин «математические спектры» оказался связанным со спектрами энергетических состояний атомов и частиц, их образующих. Правда, гильбертова теория квадратичных форм не совсем подходила для решения проблем квантовой механики; как выяснилось, в этих целях потребовались «неограниченные» формы.

Именно здесь вдохновлённый Эрхардом Шмидтом фон Нейман, который был склонен к абстрагированию больше, чем его предшественники, сделал следующий решающий шаг в этом направлении. Отказавшись от представления Гильберта о квадратичной форме как о чём-то, что может быть выражено в конкретной алгебраической форме (в виде бесконечной алгебраической суммы), фон Нейман взамен нашёл такое абстрактное определение квадратичной формы, что сумел избежать ограничений, налагаемых гильбертовым подходом. Так расширенная гильбертова спектральная теория смогла дать ответ на вполне реальные и конкретные запросы современной физики.

Теория групп, являясь центральной в современной математике, прошла в своём развитии аналогичный путь последовательных обобщений. Эта теория ведёт своё начало от частной проблемы, привлекавшей к себе умы математиков ещё в средние века. Речь идёт об отыскании решений алгебраического уравнения степени выше второй алгебраическим же путём, т.е. с помощью операций сложения, вычитания, умножения, деления и извлечения корня. Теория квадратных уравнений была известна ещё в древнем Вавилоне, а решение уравнений третьей и четвёртой степеней в общем виде было получено математиками эпохи Возрождения Джироламо Кардано, Никколо Тарталья и Людовико Феррари. Однако решение уравнений пятой и ещё более высоких степеней натолкнулось на непреодолимые трудности.

В начале XIX века новое решительное наступление на эту крепость повели Луи Лагранж, Паоло Руффини и Нильс Хенрик Абель, а также Эварист Галуа, который использовал наиболее оригинальный метод. Все они исходили из хорошо известных фактов. Во-первых, алгебраическое уравнение n-й степени вида

axn + an–1 xn–1 + ... + ax + a0 = 0

имеет n корней r1, r2, ..., rn и, во-вторых, полный набор этих корней определяет алгебраическое уравнение однозначно. Например, если 1 и 3 являются корнями некоего квадратного уравнения, то этим уравнением будет (x–1)(x–3) = x2 – 4x + 3 = 0. Коэффициенты такого уравнения представляют собой симметрические функции от его корней, т.е. зависят от всей совокупности этих корней так, что порядок их нумерации безразличен; например, если кубическое уравнение x3 + ax2 + bx + c = 0 имеет своими корнями r1, r2, r3, то его коэффициенты могут быть записаны как

a = r1 + r2 + r3,   b = rr2 + rr3 + rr1,   –c = rrr3.

Из этой записи видно, что если поменять нумерацию корней, то на коэффициентах a, b, c это никак не скажется.

Многолетняя работа над такими уравнениями позволила установить, что ключ к решению задачи выражения корней уравнения через его коэффициенты лежит не только в изучении таких симметрических выражений, но также в исследовании частично симметрических выражений и анализе симметрии, которыми они обладают. Выражение E = rr2 + rr4, например, не сохраняется при произвольных перестановках входящих в него символов r1, r2, r3, r4. Но если произвести замену индекса 1 на 2 и индекса 3 на 4, то выражение E не изменится, или, как говорят в таких случаях, оно инвариантно по отношению к такой перестановке. Если же поменять местами индексы 1 и 3, то полученное при этом выражение будет уже отлично от E. С другой стороны, последовательное осуществление двух перестановок, из которых первая нарушает E, а вторая снова его восстанавливает, может быть принято за новую перестановку, по отношению к которой E инвариантно. Совокупность таких перестановок, названная Галуа «группой», отражает внутреннюю симметрию, присущую выражению E. Раскрытие природы таких групп, по мнению проницательного Галуа, и есть ключ к построению более глубокой теории алгебраических уравнений.

Вскоре математики обнаружили применимость таких групп перестановок и к другим областям математики. Совокупность шести движений, например, превращающих равносторонний треугольник вновь в такой же треугольник, тоже образует группу. Другие группы также оказались существенными элементами большинства областей математики. Чтобы охватить такие группы во всех их видах и проявлениях единым понятием, а также предусмотреть многочисленные скрытые в них возможности, потребовалось сформулировать основополагающее понятие группы в наиболее абстрактной форме.

Это и было сделано; группой стали называть совокупность математических объектов, в которой правило «комбинирования» любых двух из них задавалось бы так, чтобы в результате снова получался бы некоторый

элемент S, принадлежащий этой же совокупности. От этого правила требуется, чтобы оно было ассоциативным [т.е. (ST)U должно быть равно S(TU)]. Далее в совокупность должен входить так называемый единичный элемент 1, который в комбинации с любым другим элементом совокупности S снова даст элемент S (т.е. 1·S=S·1=S). Наконец, для каждого своего элемента S наша совокупность должна содержать ещё и «обратный» элемент S–1 такой, что комбинация SS–1 даёт единичный элемент (SS–1 = 1).

Такое абстрактное определение группы оставляет, конечно, полностью открытым вопрос о конкретной «материальной» природе группы. Элементами группы могут быть числа, вращения геометрических тел, деформации пространства (подобного рода деформации могут, например, определяться линейными или какими-либо иными преобразованиями координат) или же, как было упомянуто выше, перестановки n объектов.

Одним из главных достижений последних 150 лет было введение понятия группы: в результате различные разделы математики обрели ясность и единообразие. Много усилий направлялось на вспомогательный, «высший» участок «линии развития» — на анализ структуры абстрактных понятий. Это неизменно способствовало выяснению строения конкретных областей математики, таких, как теория чисел и алгебра. Одно из самых замечательных достижений в этом направлении — знаменитая классификация различных разделов геометрии, предложенная Феликсом Клейном в 1870-х годах. Она основана на инвариантности некоторых определённых геометрических свойств по отношению к различным группам преобразований.

Абстрактная теория групп нашла блестящее применение в решении ещё более конкретных проблем физики элементарных частиц. Здесь возможности теории групп обусловливаются наличием довольно запутанных групп явных и скрытых симметрии во взаиморасположениях и взаимодействиях ядерных частиц. Успех теории групп в систематизации массы экспериментальных данных, а также в предсказании существования новых элементарных частиц, очевидно, свидетельствует о пользе абстракций в поисках вполне реальных истин.

Интуиция, этот неуловимый жизненный элемент, всегда активно присутствует в творческой математике, побуждая и направляя даже самое абстрактное мышление. Её наиболее распространённая форма — геометрическая интуиция — содействовала появлению многих важных достижений математики последнего времени, как относящихся к самой геометрии, так и вытекающих из работ в этой области. Тем не менее существует явная тенденция к подкреплению интуиции точными и строгими рассуждениями.

Топология, самая юная и самая мощная ветвь геометрии, наглядно демонстрирует плодотворное влияние противоречий между интуицией и логикой. Располагая небольшим числом разрозненных, но, безусловно, важных открытий (как, например, открытие односторонней ленты Мёбиуса), составлявших её «основной капитал», топология только в XIX веке предстала как область серьёзных научных исследований. Долгое время в ней почти полностью господствовала геометрическая интуиция. Поверхности разрезались и склеивались для наглядного представления математической сущности топологии как науки о свойствах поверхностей, остающихся неизменными при произвольных непрерывных деформациях. Однако уже на заре развития новой дисциплины Георг Фридрих Бернгард Риман сумел привлечь к ней внимание учёных. В своей сенсационной работе по теории алгебраических функций комплексного переменного (в состав такого переменного входит мнимое число √–1) он показал, что для подлинного понимания этих функций существенны топологические свойства некоторых специальных поверхностей, называемых теперь римановыми поверхностями.

На протяжении прошлого столетия математики открыли и подвергли систематическому исследованию большое число топологических свойств поверхностей двух, трёх и, наконец, n измерений. В начале XX века Анри Пуанкаре и ряд других математиков построили великолепное здание топологической теории, всё ещё ориентируясь на интуицию. Эта работа была тесно связана с развитием теории групп и нашла применение в других областях математики, а также сыграла свою роль в переходе математической науки на более высокую ступень. Её результаты использованы в небесной механике, в частности при построении орбит планет в пространстве, искривлённом гравитационными полями.

Но теперь учёных-топологов начало одолевать двойственное чувство: с одной стороны, они ощущали потребность заключить геометрическую интуицию в рамки современной математической строгости, с другой — им совсем не хотелось терять убедительности и стройности интуитивных геометрических выводов. В первом десятилетии XX века с этой задачей справился почти в одиночку голландский математик Л. Э. Я. Брауэр. Благодаря его огромным усилиям в топологии теперь подход не менее строгий, чем в геометрии Евклида; и дальнейшее развитие этой области математики происходило на основе логически безупречных рассуждений.

В основе тех трудностей, с которыми столкнулся Брауэр, стояла дилемма, возникшая в связи с понятием непрерывности. Каждый из нас интуитивно имеет твёрдое представление о том, что такое непрерывность (например, мы можем без труда вообразить плавную кривую). Однако каждый, кто начинает изучать дифференциальное исчисление, теряет свою уверенность, как только требуется ввести понятие непрерывности в рамки строгой математической формулировки. В этой задаче невозможно избежать трудностей, так как геометрическая интуиция даёт нам такое представление о непрерывности, которое не совсем согласуется с математически логическим представлением о ней. Строгое определение приводит к появлению множества случаев, которые, с точки зрения нашей интуиции, кажутся парадоксальными. Можно без труда, например, построить непрерывную линию (в точном соответствии с определением), не имеющую конечной длины, не имеющую определённого направления ни в какой точке, или, скажем, линию, которая, находясь внутри квадрата, может виться без самопересечений, подходя сколь угодно близко к любой его точке. Такие необычные построения показывают, что нужно соблюдать большую осторожность при обосновании топологических свойств тех или иных поверхностей или других объектов, подвергающихся сложной непрерывной деформации.

Необходимость в такой осторожной аргументации не всегда становится интуитивно понятной тому, кто не занимается топологией. Примером может служить знаменитая теорема Жордана, утверждающая, что на плоскости всякая непрерывная замкнутая линия без самопересечений разграничивает её на две чёткие области — внутреннюю и внешнюю. Любой научный работник, инженер или студент, исходя из соображений здравого смысла, скажет, что попытка доказать такую теорему представляет собой ненужное упражнение. Тем не менее при написании своего классического учебника анализа Жордан счёл необходимым доказать это утверждение. Сколь же тонкой оказалась эта проблема, если найденное Жорданом доказательство оказалось не безупречным! Равным образом никто не усомнится в том, что размерность двухмерной и трёхмерной геометрической фигуры не меняется при любых непрерывных деформациях. Однако строгое доказательство этого факта, исходящее из общего предположения об абстрактной непрерывности, — одно из главных достижений Брауэра.

Безусловно, можно избежать некоторых трудностей, возникающих при введении понятия непрерывности, если на группу непрерывных преобразований наложить некоторые ограничения (например, потребовать «гладкости» или дифференцируемости вместо чистой непрерывности). Это и было успешно исполнено. Дифференциальная топология (раздел топологии, занимающийся подобными рассмотрениями) достигла за последнее время выдающихся результатов. Изучение преобразований, подчинённых требованиям «разумной» гладкости, привело к установлению классификации топологических структур, существенно отличной от той, которая была получена при условии требования самой общей непрерывности.

Эти достижения поддерживают вполне естественный отход от стремления к не знающим границ обобщениям. Идея таких обобщений стала казаться заманчивой с тех пор, как Георг Кантор получил в конце прошлого века блестящие результаты в теории множеств. Некоторые великие учёные, особенно Пуанкаре, жестоко преследовали эту идею, считая её чуть ли не угрозой всей математике, в частности, потому, что она заводит в дебри неразрешимых парадоксов. И хотя воинствующий критицизм Пуанкаре во многом был чересчур суровым и даже реакционным, тем не менее он оказал известную пользу математикам конструктивного направления, занятым частными и вполне конкретными проблемами.

Математическая деятельность разных людей и даже одного и того же человека определяется различными стимулами. Без сомнения, тесные связи с физической реальностью важных разделов математики, особенно анализа, вдохновляют и стимулируют математическую мысль. То же относится и к другим реальностям. В теории чисел и алгебре раскрывается загадочная реальность мира чисел, прочно связанного с человеческим разумом. Более далёкой от физической реальности представляется нам реальность логических процессов, неотъемлемо входящих в математическое мышление. Тем не менее основные идеи в работах по математической логике, малоизвестных широким кругам, оказались весьма полезными для понимания и даже для конструирования автоматических вычислительных устройств.

Иными словами, конкретные частные факторы должны стимулировать математику внести свой вклад в определённую сферу реальности. Полёт в абстракции должен означать нечто большее, чем просто взлёт; отрыв от земли неотделим от возвращения на землю, даже если один и тот же пилот не в состоянии вести корабль через все фазы полёта. Самые отвлечённые, чисто математические занятия могут быть обусловлены вполне ощутимой физической реальностью. То обстоятельство, что математика — эта чистая эманация человеческого разума — может столь эффективно помочь в понимании и описании физического мира, требует особого разъяснения, и не случайно этот вопрос всегда привлекал внимание философов. Оставляя философские вопросы в стороне, следует признать, что взятые на себя математикой обязательства по решению различных физических проблем или, наоборот, видимое отсутствие таких обязательств не может быть принято за критерий установления различий между теми или иными видами математики или разногласий, существующих между самими математиками.

На самом деле между «чистой» и «прикладной» математикой невозможно провести чёткую грань. Поэтому-то в математике и не должно быть разделения на касту верховных жрецов, поклоняющихся непогрешимой математической красоте и внимающих только своим склонностям, и на работников, обслуживающих их. Подобная «кастовость» — в лучшем случае симптом человеческой ограниченности, удерживающей большинство людей от свободного странствования по необъятным просторам человеческих интересов.

Одна и та же математическая проблема может быть решена по-разному; приверженец строгого математического подхода (а стремление к таковому временами возникает у всякого человека, склонного к научному мышлению) требует бескомпромиссного совершенства. Он не допускает никаких пробелов в логике мышления и в решении поставленных задач, а достигнутый результат, по его мнению, должен быть венцом неразрывной цепи безупречных рассуждений. И если сторонник такого подхода сталкивается с трудностями, которые ему кажутся непреодолимыми, то он скорее попытается переформулировать задачу или даже поставить другую, родственную ей, трудности которой он может преодолеть. Существует и другой обходной путь: заново определить то, что считалось «решением проблемы»; в действительности подобная процедура представляет собой довольно общепринятый предварительный шаг к подлинному решению исходной задачи.

В исследованиях прикладного характера всё выглядит по-иному. Прежде всего поставленную задачу нельзя с такой лёгкостью видоизменить или обойти. Здесь требуется другое: дать правильный и надёжный с общечеловеческой точки зрения ответ. В случае необходимости математик может пойти на компромисс: он должен быть готов ввести догадки в цепь рассуждений, а также допустить известную погрешность в числовых значениях. Однако даже задачи в основном практического направления, например о течениях с ударными волнами, могут потребовать фундаментального математического исследования, чтобы установить, корректно ли поставлена такая задача. В прикладных исследованиях могут понадобиться и доказательства чисто математических теорем существования, поскольку уверенность в том, что имеется решение, может гарантировать достоверность используемой математической модели. И наконец, в прикладной математике доминируют аппроксимации (приближения) — без них невозможно обойтись при переносе реальных физических процессов на математические модели.

Обращение с реальностью, преобразованной в абстрактные математические модели, и оценка точности достигаемых при этом соответствий требуют интуитивных навыков, совершенствуемых опытом. Часто необходимо как-то преобразовать исходную математическую проблему, которая оказывается слишком сложной для решения современными методами. Это отчасти объясняет характер интеллектуального риска и удовлетворение, которое испытывают математики, работающие с инженерами и естествоиспытателями над решением реальных задач, возникающих всюду, куда проникает человек в своём стремлении к познанию природы и управлению ею.