Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.Матрицы и действия с ними.rtf
Скачиваний:
14
Добавлен:
02.08.2019
Размер:
3.15 Mб
Скачать

Определитель n-ого порядка.

Определителем квадратной матрицы порядка n называется число: 

Свойства определителей:

  1. Определитель транспонированной матрицы равен определителю исходной матрицы.

  2. Если в определителе какие-либо  две строки (столбца) равны между собой, то такой определитель равен 0.

  3. Общий множитель всех элементов какой-либо строки (или столбца) можно выносить за знак определителя.

  4. Если поменять в определителе местами какие-либо две строки (столбца), то определитель меняет знак.

  5. Если все элементы какой-либо строки (столбца) определителя равны 0, то такой определитель равен 0.

  6. Если к элементам какой-либо строки (столбца) определителя прибавить соответствующие элементы другой строки (столбца) этого же определителя, умноженные на одно и то же число, то определитель не изменяется.

Миноры, алгебраические дополнения матрицы.

Минором Mij, соответствующим данному элементу  определителя 3 порядка, называется определитель второго порядка, полученный из матрицы вычеркиванием i-ой строки и j-го столбца. Тогда формулу для вычисления определителя 3 порядка можно переписать в виде:

 

Если элементы матрицы отметить точками, то получим правило треугольников:

(+)

(-)

Слагаемые со знаком плюс представляют собой произведение элементов определителя, взятых по три так, как указано линией на левой части рисунка, а со знаком минус - на правой части.

Алгебраическим дополнением элемента  определителя 3-го порядка называется его минор, взятый со знаком плюс, если (i+j) - четное число, и со знаком минус, если (i+j) - нечетное число, т.е.

ОБРАТНАЯ МАТРИЦА.

Рассмотрим квадратную матрицу

  .

Обозначим  =det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если  = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А1, так что В = А1. Обратная матрица вычисляется по формуле

,                                               (4.5)

где А i j - алгебраические дополнения элементов a i j.

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 2.10. Для матрицы  найти обратную.

Решение. Находим сначала детерминант матрицы А     значит, обратная матрица существует и мы ее можем найти по формуле:   , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы.                  

                   

                  

                 

 откуда   .

Пример 2.11. Методом элементарных преобразований найти обратную матрицу для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей. Для этого поменяем местами первый и второй столбцы:  . К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная матрица является обратной к данной матрице А. Итак,         .