Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vtorye_voprosy (1).docx
Скачиваний:
10
Добавлен:
06.08.2019
Размер:
65.13 Кб
Скачать

5. Принцип Гюйгенса-Френеля

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых. Принцип Гюйгенса-Френеля следует рассматривать как рецепт приближенного решения дифракционных задач. В основе его лежит допущение о том, что каждый элемент поверхности волнового фронта можно рассматривать как источник вторичных волн, распространяющихся во всех направлениях Эти волны когерентны, так как они возбуждены одной и той же первичной волной. Результирующее поле в точке наблюдения P может быть найдено как результат интерференции вторичных волн. В качестве поверхности вторичных источников может быть выбрана не только поверхность волнового фронта, но и любая другая замкнутая поверхность. При этом фазы и амплитуды вторичных волн определяются значениями фазы и амплитуды первичной волны. В соответствии с принципом Гюйгенса–Френеля комплексная амплитуда поля в точке наблюдения P, обусловленная действием вторичных источников, заселяющих малый элемент поверхности ds, может быть записана в виде Здесь – комплексная амплитуда поля первичной волны от источника на элементе ds, – длина волны (источник предполагается монохроматическим),

6.Способы наблюдения интерференции света.

Явление интерференции является характерным признаком волновых процессов любой природы.

Интерференцией называется сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний. При интерференции происходит пространственное перераспределение энергии волны. В одних точках наблюдается концентрация энергии (интерференционные максимумы), в других - гашение волн (интерференционные минимумы). Причиной перераспределения энергии является разность фаз колебаний в складывающихся волнах. Необходимое условие - когерентность волн. Когерентными называются волны одинаковой частоты, разность фаз которых не изменяется со временем в каждой точке волнового поля.1. Метод Юнга. Источником света служит ярко освещенная щель S), от которой световая волна падает на две узкие равноудаленные щели S1 и S2, параллельные щели S. Таким образом, щели S1 и S2 играют роль когерентных источников.Интерференционная картина (область ВС) наблюдается на экране (Э), расположенном на некотором расстоянии параллельно S1 и S2. Как уже указывалось, Т. Юнгу принадлежит первое наблюдение явления интерференции.

2. Зеркала Френеля. Свет от источника S падает расходящимся пучком на два плоских зеркала А1О и А2О, расположенных относительно друг друга под углом, лишь немного отличающимся от 180° (угол j мал). Используя правила построения изображения в плоских зеркалах, можно показать, что и источник, и его изображения S1 и S2 (угловое расстояние между которыми равно 2j) лежат на одной и той же окружности радиуса r с центром в О (точка соприкосновения зеркал).

Световые пучки, отразившиеся от обоих зеркал, можно считать выходящими из мнимых источников S1 и S2, являющихся мнимыми изображениями S в зеркалах. Мнимые источники S1 и S2 взаимно когерентны, и исходящие из них световые пучки, встречаясь друг с другом, интерферируют в области взаимного перекрывания (на рис. 246 она заштрихована). Можно показать, что максимальный угол расхождения перекрывающихся пучков не может быть больше 2j. Интерференционная картина наблюдается на экране (Э), защищенном от прямого попадания света заслонкой (З).3. Бипризма Френеля. Она состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами. Свет от источника S преломляется в обеих призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых источников S1 и S2, являющихся когерентными. Таким образом, на поверхности экрана (в заштрихованной области) происходит наложение когерентных пучков и наблюдается интерференция.

7.Дифференциальное уравнение Максвелла для вектора Е.

Одним из важнейших следствий уравнений Максвелла является существование ЭМВ. Можно показать, что для однородной и изотопной среды вдали от зарядов и токов, создающих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженности и электромагнитного поля удовлетворяют волновым уравнениям типа и . Всякая функция, удовлетворяющая уравнениям, описывает некоторую волну. Следовательно, электромагнитные поля действительно могут существовать в виде ЭМВ. Фазовая скорость ЭМВ определяется выражением ,

8. корпускулярная теория света Ньютона

Простые лучи являются неизменными и представляют, можно сказать, атомы света, подобно атомам вещества. Этот вывод казался в хорошем согласии с корпускулярной теорией света. Действительно, неизменные атомы света, простые лучи, являются потоком и однородных частиц, которые, попадая в наш глаз, вызывают ощущение определенного цвета. Смесь же разнородных световых частиц является белым светом. При прохождении через призму белый свет разлагается. Призма сортирует световые частицы, отклоняя их на разный угол в соответствии с их цветностью. Открытие дисперсии было расценено Ньютоном и большинством его современников и последователей как факт, подтверждающий корпускулярную теорию света.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]