Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
8..землетрясения.doc
Скачиваний:
9
Добавлен:
18.08.2019
Размер:
5.96 Mб
Скачать

Цветом отображена глубина очага

Рис.26.14.Густота распределения эпицентров землетрясений

Силой более 3.5 балла

По глубине расположения очага землетрясения подразделяются на мелкофокусные - 0-70 км, среднефокусные - 70-300 км и глубокофо­кусные - 300-700 км - Самое глубокое расположение очагов зафиксировано на 720 км, по другим сведениям — 680-690 км). Деление это весьма условно и плохо увязано с особенностями внутреннего строения Земли.Большая часть очагов сильных землетрясений тяготеет к глубине 10-30 км. Подавляющее число землетрясений (85 %) происходит в об­становке сжатия и только 15 %- растяжения.

Большинство землетрясений происходит на глубине до 70 километров от поверхности Земли, меньше до 200 километров. Но бывают землетрясения и на очень большой глубине.Везде, где глубокие землетрясения случаются достаточно часто, они "вырисовывают" условную наклонную плоскость, названную по именам японского и американского сейсмологов зоной Вадати - Беньеффа. Она начинается вблизи земной поверхности и уходит в земные недра, до глубин порядка 700 километров. Зоны Вадати - Беньеффа приурочены к местам, где сталкиваются тектонические плиты - одна плита подвигается под другую и погружается в мантию. Зона глубоких землетрясений как раз и связана с такой опускающейся плитой. Глубинные наклонные зоны разломов, падающие под островные дуги, хорошо прослеживаются на глубину по очагам землетрясения и названы сейсмофокальной зоной.

Рис.26.15.Положение очага (слева) и строение сейсмофокальной зоны Беньоффа.Кружочки-гипоцентры землетрясений (справа)

Большая часть всех известных крупных землетрясений относится к тектоническому типу. Они связаны с процессами горообразования и движениями в разломах литосферных плит.Горные породы обладают определенной эластичностью, а в местах тектонических разломов - границ плит, где действуют силы сжатия или растяжения, постепенно могут накапливать тектонические напряжения. Напряжения растут до тех пор, пока не превысят предела прочности самих пород. Тогда пласты горных пород разрушаются и резко смещаются, излучая сейсмические волны. Такое резкое смещение пород называется подвижкой.Вертикальные подвижки приводят к резкому опусканию или поднятию пород. Обычно смещение составляет лишь несколько сантиметров, но энергия выделяемая при движениях горных масс весом в миллиарды тонн, даже на малое расстояние, огромна! На дневной поверхности образуются тектонические трещины. По их бортам происходят смещения относительно друг друга обширных участков земной поверхности, перенося вместе с собой и находящиеся на их поля, сооружения и многое другое. Эти перемещения можно увидеть невооруженным глазом, и тогда связь землетрясения с тектоническим разрывом в недрах земли очевидна. Есть основания предполагать, что своим происхождением СФЗ и составляющие их очаги землетрясений обязаны поддвиганию океанс­кой литосферы под континентальную и переходную Самые спокойные регионы — это чаще всего древние платформы.

Анализ пространственного размещения эпицентров землетрясений на поверхности Земли дает весьма сложную картину.Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии. Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи.Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта.

По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне  к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.

Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды.

Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах. Работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений.

Рис26.16.Мировая сеть сейсмических станций

Все исследования, проводимые в связи с проблемой землетрясений, имеют одну главную цель -предсказание землетрясений, то есть опреде­ление места, силы и времени его возможного проявления. Вопросы места и силы с большим или меньшим успехом решаются, проблема времени до сих пор не разрешеная. Возвращаясь к задаче сверхвысокой степени сложности -предска­занию времени землетрясений, отметим, что ученые многих стран про­должают поиск так называемых предвестников землетрясений. Среди выделяют следующие:

Сейсмичность. Положение и число землетрясений различной магнитуды может служить важным индикатором приближающегося сильного землетрясения. Например, сильное землетрясение часто предваряется роем слабых толчков. Выявление и подсчет землетрясений требует большого числа сейсмографов и соответствующих устройств для обработки данных .

Движения земной коры. Геофизические сети с помощью триангуляционной сети на поверхности Земли и наблюдения со спутников из космоса могут выявить крупномасштабные деформации (изменение формы) поверхности Земли. На поверхности Земли проводится исключительно точная съемка с помощью лазерных источников света.

Опускание и поднятие участков земной коры. Вертикальные движения поверхности Земли можно измерить с помощью точных нивелировок на суше или мареографов в море. Поскольку мареографы устанавливаются на грунте, а записывают положение уровня моря, они выявляют длительные изменения среднего уровня воды, которые можно интерпретировать как поднятия и опускания самой суши .

Наклоны земной поверхности. Для измерения угла наклона земной поверхности был сконструирован прибор, называемый наклономером. Наклономеры обычно устанавливаются около разломов на глубине 1-2 м ниже поверхности земли и их измерения указывают на выразительные изменения наклонов незадолго до возникновения слабых землетрясений .

Деформации. Для измерения деформаций горных пород бурят скважины и устанавливают в них деформографы, фиксирующие величину относительного смещения двух точек. Эти приборы настолько чувствительны, что измеряют деформации в земной поверхности вследствие земных приливов, вызванных гравитационным притяжением Луны и Солнца. Земные приливы, представляющие собой движение масс земной коры, похожее на морские приливы, вызывают изменения высоты суши с амплитудой до 20 см.

Скорости сейсмических волн. Скорость сейсмических волн зависит от напряженного состояния горных пород, через которые волны распространяются. Изменение скорости продольных волн – сначала ее понижение (до 10%), а затем, перед землетрясением,- возврат к нормальному значению, объясняется изменением свойств горных пород при накоплении напряжений .

Геомагнитизм. Земное магнитное поле может испытывать локальные изменения из-за деформации горных пород и движения земной коры. С целью измерения малых вариаций магнитного поля были разработаны специальные магнитометры. Такие изменения наблюдались перед землетрясениями в большинстве районов, где были установлены магнитометры .

Земное электричество. Изменения электросопротивления горных пород могут быть связаны с землетрясением. Измерения проводятся с помощью электродов, помещенных в почву на расстоянии нескольких километров друг от друга. При этом измеряется электрическое сопротивление толщи земли между ними.

Содержание радона в подземных водах. Радон – это радиоктивный газ, присутствующий в грунтовых водах и в воде скважин. Он постоянно выделяется из Земли в атмосферу. Изменения содержания радона перед землетрясением сменяется резким его падением перед землетрясением.

Уровень воды в колодцах и скважинах. Уровень грунтовых вод перед землетрясениями часто повышается или понижается по-видимому из-за изменений напряженного состояния горных пород. Землетрясения могут и прямо влиять на уровень воды.Уровень воды в скважинах, находящихся вблизи эпицентра, часто испытывает стабильные изменения: в одних скважинах он становится выше, в других – ниже .

Изменение химического состава вод и газов. Все геодинамически активные зоны Земли отличаются существенной тектонической раздробленностью земной коры, высоким тепловым потоком, вертикальной разгрузкой вод и газов самого пестрого и нестабильного во времени химического и изотопного состава. Это создает условия для поступления в подземные.

Поведение животных. В течение столетий многократно сообщалось о необычайном поведении животных перед землетрясением.

Современные модели подготовки землетрясений построены на основании сопоставления опыта лабораторного моделирования и результатов полевых наблюдений сейсмичности. Теоретическую основу составляют представления механики и физики разрушения материалов и горных пород. Акт землетрясения рассматривается как итог долговременной эволюции трещинообразования в земле. В разных моделях уделяется различное внимание масштабу рассматриваемых геологических разрывов – трещин, их расположению в пространстве, дополнительным физико-механическим факторам, влияющим на протекание процесса трещинообразования.

Прогноз землетрясений,местоположение и глубина очага,сила землетрясения являются важнейшей задачей сейсмологии.Различают долгосрочный, среднесрочный и краткосрочный прогнозы.

Долгосрочный прогноз основывается на наблюдениях за изменением режима землетрясений, т.е. за появлением зон сейсмического застоя, за изменениями напряженного состояния вещества литосферы, изменением ее сейсмической прозрачности, наблюдении за тем, как отдельные небольшие блоки в своем поведении постепенно отказываются от самостоятельности и объединяются в процессе подготовки одного большого удара. Наблюдения над этими процессами могут дать сведения о подготовке землетрясения за срок от нескольких месяцев до нескольких лет .

Рис.26.17.Четыре стадии развития землетрясения

Рис.26.18.Карта сейсмического районирования и прогноза проявлений сейсмичности разной силы Северной Евразии (цветом указаны баллы)

Рис.26.19.Карта прогноза сейсмичности

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]