Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЕОЛОГИЯ НЕФТИ.pdf
Скачиваний:
32
Добавлен:
23.08.2019
Размер:
17.82 Mб
Скачать

vk.com/club152685050 | vk.com/id446425943

среднезернистых песках она приближается к 0, в карбонатных породах может составлять 10-15%,

а в пемзе - 30-40 %. - Прим. ред.

³В последнем случае речь идет, вероятно, об образцах, полученных с помощью бокового грунтоноса. - Прим. ред.

Таблица 4-1 Характерные значения пористости и проницаемости пород-

коллекторов

1.С.R. Fettke, The Bradford Oil Field, Pa. Geol. Surv., 4th series, pp. 214-228, 1938.

2.M. Musk at, Physical Principles of Oil Production, McGraw-Hill Book Co., New York,. p. 585,

1949.

3.H.S. Gibson, Oil Production in Southwestern Iran, World Oil, p. 273. 1948.

4.W.Y. Pickering, C.L. Dorn, Rangely Oil Field, Rio Blanco County, Colorado, in Structure of Typical Am. Oil Fields, 3, p. 143, 1948.

5.H.E. Minor, M. A. Hanna, East Texas Field, Rusk, Cherokee, Smith, Gregg, and Upshur Counties, Texas, in Stratigraphic Type of Oil Fields, Am. Assoc. Petrol. Geol., Tulsa, Okla., pp. 625, 626, 1941.

6.W.T. Lietz, The Performance of the Ten Section Oil Field, Tech. Paper 2643, 1949; Trans. Am. Inst. Min. Met. Engrs., 186, pp. 251-258, 1949.

7.К.В. Barnes, J.F. Sage, Cas Repressuring at Glenn Pool, in Production Practice, Am. Petrol. Inst., p. 57, 1943.

8.H.B. Hill, E. L. Rawlins, C. R. Bopp, Engineering Report on Oklahoma City Oil Field, Oklahoma, RI 3330, U. S. Bur. Mines, p. 199, 1937.

9.A.L. Payne, Cumarebo Oil Field, Falcon, Venezuela. Bull. Am. Assoc. Petrol. Geol., 35, p. 1869, 1951.

Измерения пористости

Измерения, необходимые для вычисления пористости, производятся в лаборатории

vk.com/club152685050 | vk.com/id446425943

на небольших кусочках, вырезанных из керна, либо на шламе. К настоящему времени разработано и описано большое число методов быстрого и точного определения пористости [4]. Применяется также несколько качественных методов оценки пористости,

дополняющих различные виды анализа кернового материала или заменяющих последние,

когда они невозможны. Ниже приводится их краткое описание.

Электрокаротаж. Этот метод заключается в измерении (в милливольтах)

естественного электрического потенциала пород (спонтанного потенциала, или ПС).

Низкие значения потенциала устанавливаются против непроницаемых пластов, тогда как более высокие значения - против пористых (проницаемых) слоев (см. стр. 83-87: глава 3,

электрический каротаж, А.Ф.).

Радиоактивный каротаж. С помощью гамма-каротажа измеряют естественное гамма-излучение пройденных скважиной пород, а с помощью другой разновидности радиоактивного каротажа - нейтронного каротажа - измеряют гамма-излучение из пород,

возбуждаемое действием нейтронов (см. стр. 87-89: глава 3, радиоактивный каротаж,

А.Ф.). Нейтронный каротаж фиксирует прежде всего содержание в пласте водорода и,

следовательно, указывает на присутствие в толще пород флюидов, таких, как газ, нефть и вода. Наличие же последних свидетельствует о том, что породы обладают пористостью.

Гамма-каротаж и нейтронный каротаж широко используются для выявления пористости известняковых и доломитовых коллекторов.

Другие виды каротажа. Очень полезны для определения пористости пород-

коллекторов микрокаротаж и акустический каротаж. Качественную характеристику пористых зон позволяет выявить и кавернометрия, а в совокупности с другими видами каротажа она дает возможность произвести даже количественное определение пористости.

Исследование шлама под микроскопом. В случае отсутствия керна очень часто единственным способом непосредственного наблюдения пористости является изучение под бинокулярным микроскопом кусочков бурового шлама. Нефть, насыщающая мельчайшие пустоты, может быть обнаружена благодаря ее флуоресценции под ультрафиолетовыми лучами. Опытный микроскопист может быстро определить характер пористости и дать качественную оценку ее относительной величины, используя такие термины, как «непроницаемый», «плотный», «пустоты», «точечная пористость», «пористый», «кавернозный», «межкристаллическая», «межзерновая». Отсутствие в породе пор, видимых в микроскоп, обычно свидетельствует о том, что породы имеют слишком низкую пористость, чтобы содержать значительные количества нефти.

Малый объем порового пространства коллектора, как может быть установлено под

vk.com/club152685050 | vk.com/id446425943

микроскопом, обусловливается различными факторами: порода может быть, например,

плотным тонкокристаллическим литографским известняком или доломитом; она может состоять из мелких и очень мелких песчаных частиц; содержать большое количество глинистых частиц, слагающих основную массу или образующих оболочки на песчаных зернах; содержать большое количество цемента; поровое пространство породы может быть занято в значительной степени каким-либо веществом, попавшим в поры под давлением [5].

Механический каротаж. Неожиданное увеличение значений проходки на диаграмме механического каротажа, обусловленное резким повышением скорости бурения с «проваливанием» бурового инструмента, часто свидетельствует о вскрытии толщи пористых пород. Чем больше пор содержит порода, тем меньшей плотностью она обладает и легче поддается разбуриванию. Подобные изменения скорости проходки часто рассматриваются как указание на наличие продуктивного пласта и служит сигналом для начала отбора керна с целью определения характера пород.

Неполное извлечение керна. Керн, извлекаемый при вращательном бурении обычным колонковым буром, может оказаться короче соответствующего интервала его отбора. Очень часто эта неполнота извлечения керна обусловливается трещиноватостью,

пористостью и несцементированностью породы-коллектора, вследствие чего последняя не полностью захватывается колонкой и частично выносится на поверхность в виде бурового шлама. Тот факт, что зоны неполного извлечения керна могут соответствовать толщам пород с аномально высокой пористостью, объясняет существование эмпирического правила: «Керн не извлекается - хорошая скважина».

Конечно, никогда нельзя сказать с уверенностью, действительно ли плохой вынос керна указывает на высокую пористость пород соответствующего интервала разреза,

однако определенную помощь в решении этого вопроса могут оказать данные механического каротажа, поскольку пористые породы бурятся быстрее, чем плотные.

Появление алмазных колонковых долот сделало возможным почти стопроцентный вынос керна; поэтому их применение обычно позволяет производить непрерывную регистрацию изменений пористости вскрываемых скважиной пород по керну.

Проницаемость

Проницаемость - это свойство породы, характеризующее возможность перемещения флюидов через сообщающиеся поры (эффективную пористость) без нарушения и смещения слагающих ее частиц; иными словами, проницаемость служит мерой флюидной проводимости породы и, очевидно, является наиболее важным

vk.com/club152685050 | vk.com/id446425943

параметром коллектора. В геологии нефти и газа проницаемость трактуется не как абсолютная, а как относительная величина; порода называется проницаемой, если за короткое время (например, в течение часа) она может пропустить заметное количество флюидов, и непроницаемой, если скорость фильтрации в ней ничтожна. Однако следует признать, что в масштабе геологического времени и по отношению к газам и жидкостям с малой вязкостью почти все породы обладают некоторой проницаемостью.

Единица измерения проницаемости пород в системе CGS была названа дарси, по имени Анри Дарси [6], который в 1856 г. исследовал фильтрацию жидкостей в пористой среде. Закон Дарси выражается уравнением

где q - объемный расход жидкости (в единицу времени) в см3/сек при горизонтальном течении, k - постоянная проницаемости в дарси, А - площадь поперечного сечения в см2, µ - вязкость жидкости в сантипуазах и dp/dx - гидравлический градиент, или разница в давлении (р) в направлении течения (х), в атм/см. Это уравнение полностью характеризует вязкое или ламинарное течение гомогенных флюидов в пористых средах с однородной упаковкой частиц и постоянным поперечным сечением¹. Таким образом, при заданном значении к скорость фильтрации флюидов через блок пористой породы прямо пропорциональна перепаду давления, а также площади поперечного сечения блока и обратно пропорциональна вязкости флюидов протяженности пути фильтрации.

Американский нефтяной институт дает следующее произвольное определение единицы дарси в системе CGS: «Пористая среда обладает проницаемостью в 1 дарси, если однофазный флюид с вязкостью в 1 сантипуаз, полностью насыщающий пустоты среды,

фильтруется через нее в условиях вязкого течения со скоростью 1 см/сек при площади поперечного сечения среды 1 см2 и при давлении или соответствующем гидравлическом градиентом 1 атм/см (76,0 см ртутного столба)» [7]. В «условиях вязкого течения» скорость потока настолько низка, что становится прямо пропорциональной гидравлическому градиенту. Дарси является коэффициентом пропорциональности между этими величинами, а определенное числовое значение проницаемости – свойством и характерной особенностью только пропускающей

¹Турбулентное течение в породах-коллекторах не представляет интереса. Строгая формулировка закона Дарси требует учета ускорения силы тяжести и направления. Читатель, желающий более подробно ознакомиться с обстоятельствами установления и ограничениями применимости закона Дарси, отсылается к работам Хьюберта (Hubert, Journ., Geol. 48, pp. 787-826,

1940) и Маскета (Мuskat, Physicalles Principles of Oil Production, McGraw-Hill Book Co., New York, pp. 123-131, 1949).

флюид среды, но не самого флюида.

Соседние файлы в предмете Геология