Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЕОЛОГИЯ НЕФТИ.pdf
Скачиваний:
32
Добавлен:
23.08.2019
Размер:
17.82 Mб
Скачать

vk.com/club152685050 | vk.com/id446425943

между двумя жидкостями, характеризующимися различной электропроводностью. В

скважину нагнетают соленую воду до полного перекрытия коллекторского пласта. Затем она проталкивается в пласт закачиваемой в скважину нефтью. Скорость снижения раздела между нефтью и соленой водой фиксируется электрозондом по мере его смещения вниз по стволу вслед за этой поверхностью раздела. Проницаемость пород любой части разреза проницаемого пласта выражается в процентах относительно общей проницаемости пород всего разреза в целом.

6.Качественная оценка проницаемости может быть произведена посредством закачивания в коллектор радкоактивного глинистого раствора и последующего измерения радкоактивности против коллектора с помощью счетчика Гейгера. Высокая радиоактивность указывает на интервалы наибольшего проникновения радкоактивного раствора в пласт и фиксирует, таким образом зоны высокой проницаемости.

7.Основываясь на зависимости между проницаемостью пород и кривой их капиллярного давления, можно рассчитать проницаемость по шламу или обломкам керна

[13](см. также стр. 421-427: Капиллярное давление).

Эффективная и относительная проницаемость

Закон Дарси, которому подчиняется фильтрация флюидов в пористой среде,

основывается на допущении, что в пласте присутствует только один флюид и что он полностью насыщает породу. Однако в природе поровое пространство коллектора содержит в различных количествах газ, нефть и воду, причем каждый из этих флюидов препятствует течению других. Если флюид насыщает породу не полностью, как это обычно и наблюдается в естественных условиях, то способность породы проводить его в присутствии других флюидов называется эффективной проницаемостью породы для данного флюида [14]. Эффективная проницаемость для воздуха, газа, нефти и воды обозначается соответственно как ka, kg, kо и kw¹. Установлено, что каждое данное значение насыщенности2 пласта любым из перечисленных флюидов имеет постоянную зависимость от эффективной проницаемости; если один из этих параметров меняется,

пропорционально ему изменяется и другой. Однако эта зависимость различна для разных пород и должна быть определена экспериментальным путем. На нее оказывают влияние,

очевидно, такие факторы, как разбухание глинистых частиц, наличие адсорбционных пленок, гидрофобных и гидрофильных поверхностей, присутствие в пласте других несмешивающихся флюидов и давление газа.

Отношение между эффективной проницаемостью для данного флюида при частичной насыщенности и проницаемостью при 100%-ной насыщенности (абсолютная

vk.com/club152685050 | vk.com/id446425943

проницаемость) называется относительной проницаемостью [15]. Она обозначается как kg/k, kо/k и kw/k (или как соответственно для газа, нефти и воды и колеблется от нуля при низкой насыщенности до 1,0 при 100%-ном насыщении. Иными словами, относительная проницаемость - это отношение количества какого-либо флюида, которое фильтруется через породу при определенной степени насыщения и в присутствии других флюидов, к

тому его количеству, которое могло бы профильтроваться при том же градиенте давления и наличии тех же флюидов в случае 100%-ной насыщенности. Поскольку поровое пространство всех природных резервуаров заполнено газом, нефтью и водой в различных пропорциях, относительная проницаемость породы-коллектора для одного из этих флюидов зависит от количества (насыщения) и природы других присутствующих в пласте флюидов. При исследованиях коллекторских свойств пород фактически всегда необходимо пользоваться относительной проницаемостью, а не проницаемостью для какого-либо отдельно взятого флюида. Относительная проницаемость породы для любого флюида возрастает с увеличением ее насыщенности этим флюидом, пока, наконец, при полном насыщении не будет достигнуто максимальное значение k.

Относительную проницаемость следует определять экспериментально для каждой породы при различных комбинациях насыщения ее отдельными флюидами. В процессе эксплуатации залежи эти соотношения непрерывно меняются. На фиг. 4-5 и 4-6 [16]

показаны типичные графики изменения относительной проницаемости, в основных чертах отражающие характер этого явления. Из фиг. 4-5 видно, что порода непроницаема для нефти, пока ее нефтенасыщенность не станет равной 30% или превысит эту цифру.

¹Предлагается (API RP № 27, р. 4) стандартизировать символизацию записи эффективной проницаемости. Так, k0 (60, 13) должно означать эффективную проницаемость среды для нефти (в миллидарси или дарси) при ее нефтенасыщенности, равной 60%, водонасыщенности. равной 13%, и газонасыщенности, составляющей 27%. Концентрация газа устанавливается по разности между 100%-ной насыщенностью среды и суммарной концентрацией воды и нефти. Тогда kw (50, 40) означает эффективную проницаемость среды для воды при 50%-ной нефтенасыщенности, 40%- ной водонасыщенности, 10%-ной газонасыщенности.

²Насыщенность определяется отношением объема флюида в породе к общему объему пор.

Причина такого явления заключается в том, что нефть сначала преимущественно смачивает поверхности минеральных частиц породы; она прилипает к ним, заполняя при этом наиболее мелкие пустоты (см. также стр. 416-421, где рассматривается смачиваемость пород, капиллярное давление). В этот период, когда относительная газопроницаемость породы колеблется в пределах 1,0-0,63, газ

vk.com/club152685050 | vk.com/id446425943

Фиг. 4-5. Типичная зависимость относительной проницаемости от изменений насыщенности пород газом и нефтью.

перемещается свободно. Другими словами, пока нефтенасыщенность породы не достигнет

30 %, а ее газонасыщенность колеблется между 100 и 70 %, только газ может проходить через породу. В точке пересечения кривых

Фиг. 4-6. Типичная зависимость относительной проницаемости от изменений насыщенности пород водой и нефтью.

относительная проницаемость одинакова для газа и нефти, и оба эти флюида фильтруются через породу в равной степени хорошо. Выше этой точки нефтенасыщенность достигает

100 %, и относительная проницаемость породы для нефти возрастает до 1,0 (величина,

отражающая к породы). При этом газонасыщенность породы снижается до нуля.

Диаграмма, приведенная на фиг. 4-6, отличается от только что описанной тем, что смачивающей жидкостью здесь является не нефть, а вода. Во всех пустотах породы всегда содержится некоторое количество остаточной воды; однако, как следует из диаграммы,

вода не начинает просачиваться сквозь породу, пока водонасыщенность не превысит 20%.

При низкой водонасыщенности вода находится в породе в связанном или «погребенном»

vk.com/club152685050 | vk.com/id446425943

состоянии, при этом она преимущественно смачивает поверхности минеральных частиц породы и заполняет более мелкие поры (о связанной и погребенной воде см. на стр. 149153: глава 5, классификация вод нефтяных месторождений, А.Ф.). По мере возрастания водонасыщенности от 5 до 20 % нефтенасыщенность породы снижается от 95 до 80 %.

Вплоть до этого момента порода пропускает только нефть и совершенно непроницаема для воды. В точке пересечения кривых при 56 %-ной водо- и 44 %-ной нефтенасыщенности относительная проницаемость породы равнозначна для обеих жидкостей, и обе они одинаково хорошо проходят через породу. Когда водонасыщенность превосходит этот уровень, вода начинает фильтроваться более свободно, а

нефтенасыщенность постепенно снижается; примерно при 10 %-ной нефтенасыщенности нефть прекращает движение, иначе говоря, порода в этом случае становится непроницаемой для нефти и через нее может фильтроваться только вода.

Соотношения, отраженные на приведенных диаграммах (фиг. 4-5 и 4-6), широко используются при решении задач, связанных с движением флюидов в проницаемых породах. Вероятно, наиболее важным аспектом их применения в геологии нефти и газа является вывод о том, что для начала движения в породе несмачивающего флюида необходима, по крайней мере, 5- 10 %-ная насыщенность, а для смачивающих жидкостей она должна составлять не менее 20-40 %. Это означает, что для нефти и газа (как несмачивающих флюидов) должно быть достигнуто насыщение порового пространства минимум в 5-10 %, прежде чем они смогут начать перемещаться в водонасыщенной породе и скапливаться в залежи (при условии, конечно, что эти закономерности,

установленные лабораторным путем и на протяжении времени существования залежей нефти и газа, можно экстраполировать на процессы, длительность которых исчисляется геологическим временем). Кроме того, приведенные диаграммы позволяют сделать вывод,

что в каждой нефтяной залежи породы характеризуются остаточной нефтенасыщенностью, равной 5-10 %, и это количество нефти нельзя извлечь обычными методами эксплуатации. Эти вопросы будут рассмотрены более подробно ниже, при описании процессов миграции и аккумуляции углеводородов (глава 12).

Классификация и происхождение порового пространства

Различают два основных типа порового пространства осадочных пород: первичную,

или межзерновую, пористость и вторичную, или промежуточную [17].

Первичная, или межзерновая, пористость

Эта пористость иногда называется первоначальной (original) в связи с тем, что она

vk.com/club152685050 | vk.com/id446425943

возникает вместе с отложением осадков. Песок является проницаемой породой с первичной пористостью. К менее проницаемым средам относятся глинистые, карбонатные и кристаллические породы. Характер первичной пористости определяется структурой порового пространства, формой пор, степенью их сообщаемости между собой и распределением в пласте осадочной породы [18].

Термин «упаковка» характеризует способ взаимного сочленения минеральных частиц обломочной породы [19]. Первичная пористость породы в значительной мере зависит от характера упаковки частиц, который в свою очередь контролируется, кроме всего прочего, степенью однородности размеров обломочных зерен. Если бы все зерна песчаника представляли собой правильные сферы одинакового размера, то его пористость колебалась бы от 47,6% при кубической до 25,9% при ромбоэдрической упаковке сферических зерен, а среднее значение пористости такого песчаника составляло бы 36,7% (фиг. 4-7). Пористость агрегата единообразно упакованных сферических зерен теоретически не зависит от их размера при условии, что он одинаков для всех частиц.

Таким образом, песок, сложенный однородными округлыми крупными зернами, будет иметь такую же пористость, что и песок, сложенный однородными округлыми, но мелкими зернами, если в обоих

Фиг. 4-7. Сравнение величины пористости при кубической (слева) и ромбоэдрической упаковке сферических зерен (Gratоn, Journ. Geol., 43, p. 800, Fig. 5, 1953).

будет одинаковым тип упаковки. Однако в действительности полной гранулометрической однородности в обломочных породах-коллекторах никогда не бывает, поскольку известно, что пористость песчаников обычно составляет около 20%. Поры между крупными зернами, как правило, заполняются более мелкими частицами основной массы.

В конечном счете порода занимает минимально возможный объем, ибо обычные седиментационные процессы, такие, как деятельность волн и течений, взмучивают и сортируют частицы, пока при данном гранулометрическом составе и форме частиц не достигается наиболее плотная их упаковка.

Наибольшая гранулометрическая однородность свойственна обломочным породам,

сложенным хорошо отсортированными и окатанными песчаными зернами или оолитами.

Частицы, слагающие тонкодисперные обломочные породы, обычно менее хорошо

vk.com/club152685050 | vk.com/id446425943

окатаны по сравнению с частицами более грубозернистых пород, так как природные процессы окатывания не могут эффективно воздействовать на очень мелкие частицы [20].

В гранулометрическп однородных породах чем меньше размер зерен, тем выше пористость; это обусловлено трением, сцеплением частиц и образованием ими перемычек

- явлениями, которые более присущи зернам меньшего размера, обладающим большей удельной поверхностью [21]. Форма частиц обломочных пород изменяется от округлой до угловатой, уплощенной и пластинчатой, а их размер - от очень крупных до мелких и даже коллоидных. Столь же широко варьирует количество цементирующего материала,

заполняющего прмежутки между зернами. Таким образом, пористость обычной обломочной породы представляет собой результат комбинации таких переменных параметров, как размер и форма зерен, сортировка, упаковка, а также характер и количество цементирующего материала. Пористость резко снижается с добавлением тонких частиц основной массы, которые заполняют поровое пространство. Многие менее значительные изменения пористости и проницаемостп, происходящие в обычном коллекторе обломочного происхождения, связаны с изменениями условий осадконакопления, к которым: минеральные частицы весьма чувствительны.

Пористость большинства песчаных коллекторов является преимущественно первичной. В пластах с очень высокой пористостью песчаные зерна обычно несцементированы и слабо связаны между собой, а потому могут захватываться и увлекаться потоком нефти, иногда в значительных количествах. Например, зерна рыхлого песка, извлекаемые вместе с нефтью из формации Уилкокс (ордовик) на месторождении Оклахома-Сити, при плотной упаковке образуют агрегат с пористостью около 3 %, тогда как пористость консолидированных пород того же месторождения, судя по данным исследования керна, составляет в среднем 16 % [22]. Крайне низкая пористость обломочных пород чаще всего связана с заилением песчаного материала,

неоднородностью гранулометрического состава, высоким содержанием основной массы, а

иногда и плотной цементацией слагающих породу частиц - кремнеземом, кальцитом или доломитом.

Условия, контролирующие проницаемость, в значительной мере отличаются от тех,

которые определяют пористость [23]. К числу геологических факторов, влияющих на проницаемость возможных пород-коллекторов, можно отнести следующие:

1.Температура¹. С повышением температуры понижается вязкость жидкостей, а

проницаемость изменяется обратно пропорционально последней.

2.Гидравлический градиент. Скорость течения флюида прямо пропорциональна гидравлическому градиенту. Вероятно, при достаточно высоком перепаде давлений и

vk.com/club152685050 | vk.com/id446425943

низкой вязкости жидкостей в какой-то степени проницаемы любые породы. Однако мы имеем в основном дело с низкими градиентами, большей частью составляющими в среднем менее 50 фунт/кв. дюйм (3 5 кг /см²) и редко превышающими 500 фунт/кв. дюйм

(35 кг/см ) на милю.

3. Форма зерен и упаковка. Установлено, что при неоднородном гранулометрическом составе проницаемость пород тем выше, чем больше форма зерен отклоняется от правильной сферической. Так, проницаемость песчаных пород состоящих из угловатых зерен, выше проницаемости тех же пород, сложенных преимущественно сферическими зернами аналогичных размеров, что обусловлено менее плотной упаковкой угловатых зерен и образованием ими перемычек. Породы, сложенные главным образом уплощенными или пластинчатыми (наподобие листочков слюды) частицами, а также кристаллами игольчатой формы, обладают рыхлой упаковкой, характеризуются высокой пористостью и, как правило, имеют хорошую проницаемость. И хотя в данном случае с уменьшением размера зерен пористость пород возрастает относительная проницаемость понижается, что объясняется увеличением извилистости поровых каналов и повышением капиллярного давления, вызывающими более высокое насыщение пород смачивающими жидкостями.

Уплотнение и цементация пород уменьшают их проницаемость, связанную с первичной пористостью, в то время как появление каналов растворения увеличивают ее.

Наличие трещин, разрывов, поверхностей отдельности и особенно поверхностей напластования значительно повышает проницаемость пород благодаря большой площади поперечного сечения связанных с ними плоских щелей. Проницаемость меняется обратно пропорционально длине потока и, следовательно, извилистости путей миграции; поэтому любое укорочение последних ведет к увеличению проницаемости.

Карбонатные породы-коллекторы обычно в большей степени, чем песчаные характеризуются вторичной пористостью. Однако часто трудно провести различие между первичной и вторичной пористостью карбонатных пород хотя некоторые из них бесспорно обладают первичной пористостью, которая представлена такими формами, как: 1) поры внутри и между раковинами ядрами ископаемых, их обломками, остатками фораминифер и водорослей и поры в ракушнике; 2) поры между карбонатными кристаллами

¹Правильнее было бы на первое место поставить размер зерен и степень их сортировки ибо с увеличением размеров зерен и сортировки материала проницаемость в отличие от пористости резко повышается. - Прим. ред.

и по плоскостям спайности внутри них - это так называемая межкристаллическая

vk.com/club152685050 | vk.com/id446425943

пористость; 3) поры, связанные с оолитами и оолитовыми известняками; 4) поры вдоль поверхностей напластования, образующиеся в результате изменения условий седиментации, отложения глинистого и алевритового материала и, возможно, появления кристаллической структуры, отличной от таковой в основной части карбонатного пласта; 5) трещины усыхания и уплотнения, возникающие в процессе седиментации.

Некоторые диагенетические процессы продолжаются в карбонатных породах и после их литификации [24], что способствует образованию вторичной пористости.

Уплотнение, цементация, растворение, перекристаллизация и доломитизация обычно протекают в диагенетическую и катагенетическую стадии преобразования карбонатных отложений. Пористость, возникающая в результате этих процессов (если она поддается выявлению), может считаться вторичной, тогда как пористость, являющаяся результатом лишь незначительного изменения первичных осадочных свойств пород, может рассматриваться как первичная. Межкристаллическая пористость может быть как

Фиг. 4-8. Шлифы известняковых пород-коллекторов, импрегнированных пластмассой, заполнившей поры (зачернены) (Stewart, Craig, Morse, Tech. Paper 3517, Trans. Am. Inst. Min. Met. Engrs., 198, pp. 93-102, 1953). Масштаб 1:100 дюймов. А -

рифовый тип пористости; Б - первичная пористость; В - точечная пористость; Г - трещинная пористость.

первичной, так и вторичной, и определение ее генезиса часто весьма затруднительно. То же самое справедливо и по отношению к трещинам, которые образуются в результате вторичных деформаций, или в процессе первичного уплотнения карбонатных осадков¹.

Примеры различных типов пористости в известняках показаны на фиг. 4-8.

Примерами природных резервуаров, приуроченных к карбонатным породам с первичной пористостью, могут служить линза оолитовых известняков и ракушечника на месторождении Лисбон в Луизиане [25] (см. также стр. 296: фиг. 7-26) и пенсильванская ракушечниковая толща на месторождении Тодд в западном Техасе [26] (см. стр. 295-296:

фиг. 7-25 – 7-27). На Южных месторождениях Мексики нефть добывается из известняка Эль-Абра (мел). Его пористость обусловлена преимущественно наличием обломков раковин, а также полых отпечатков кораллов и различных типов моллюсков, включая

vk.com/club152685050 | vk.com/id446425943

рудистов, а сообщаемость пор - присутствием трещин и разрывов. Внутренняя часть полых отпечатков выполнена друзами. Некоторые из этих полостей в обнажениях содержат битум (альбертит), тогда как на глубине они заполнены нефтью, газом или асфальтом [27]. Формация Эль-Абра представлена рифовым известняком, пористость которого

¹Тектонические трещины характеризуются такими особенностями, как Выдержанность по площади, пересечение зерен и органических остатков и т. д., благодаря которым их легко отличить от диагенетических и других трещин. - Прим. ред.

главным образом первичная, что является характерной особенностью многих органогенных рифов (см. также стр. 293).

Оолиты представляют собой небольшие округлые сростки, состоящие обычно из кальцита, но иногда также из кремнезема. Они образуются в результате концентрического нарастания слагающего их вещества вокруг чужеродного ядра. Диаметры оолитов колеблются от 0,25 до 2,0 мм, но чаще всего имеют размер 0,5-1,0 мм. Название «оолит»,

или «икряной камень», происходит от внешнего сходства их с икрой рыб. Более крупные сростки телец размером с горох называются пизолитами. С оолитами связаны два типа порового пространства. В большей части оно представлено порами между оолитами и,

следовательно, сходно с межзерновой пористостью любой обломочной породы. В

некоторых случаях, однако, оолиты могут быть растворены и на их месте остаются пустоты, разделенные нерастворимым материалом основной массы и цемента. Породы,

сложенные исключительно оолитами с большим количеством оолитовых отпечатков,

часто образуют прекрасные природные резервуары, характеризующиеся высокой пористостью и проницаемостью.

Многочисленные залежи нефти и газа связаны с природными резервуарами,

приуроченными к известнякам и доломитам оолитового строения, пористость которых в основном первичная. Более 120 млн. баррелей нефти было получено из плотных бурых оолитовых известняков Смаковер (юра) на месторождении Магнолиа в округе Колумбия,

штат Арканзас [28]. Пористость чистой оолитовой породы достигает почти 20 %, а ее проницаемость - около 1000 миллидарси, тогда как части природного резервуара,

сложенные известняками и мелом, характеризуются меньшей пористостью и проницаемостью. Ловушка представляет собой симметричную удлиненную куполовидную складку амплитудой до 270 футов, занимающую площадь около 4700

акров. В недрах южного Арканзаса широко развита состоящая из оолитовых пород формация Рейнолдс, относимая к верхней части известняков Смаковер. Это самая нижняя продуктивная толща месторождения Шулер [29], где она сложена типичными

Соседние файлы в предмете Геология