Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ЦО АВС2.doc
Скачиваний:
55
Добавлен:
07.09.2019
Размер:
8.2 Mб
Скачать

3.6.2 Разрядность

Напомним, что преобразование аналогового сигнала в цифровой поток данных происходит в два этапа. Первый этап - это дискретизация сигнала на основе теоремы Котельникова с использованием повышенной частоты дискретизации. Второй этап - это квантование амплитуды дискретных отсчетов, полученных на первом этапе. Представим себе, что отсчет представляет собой некий столбик или полоску, наподобие той, что мы видим на студийном индикаторе уровня сигнала. Длина этой полоски и есть амплитуда сигнала в данном отсчете. Процесс квантования амплитуды тогда можно представить как измерение длины полоски с помощью линейки. Чем чаще идут метки на линейке, тем точнее мы можем измерить длину полоски (амплитуду) и тем меньше будут ошибки измерений (шумы квантования). Однако, чем чаще расположены метки на линейке - тем больше цифр (бит) нам потребуется для записи числа, соответствующего измеренной нами длине полоски (амплитуде сигнала в отсчете). Например, если на линейке 32 метки, то для представления длины полоски (амплитуды) в виде числа понадобится максимум 5 бит (32=25). В данном случае 5 бит и будет разрядностью АЦП.

Таким образом, процесс квантования амплитуд отсчетов фактически заключается в измерении их величин по отношению к некоторому опорному источнику напряжения (линейка в предыдущих объяснениях), обычно имеющемуся внутри корпуса микросхемы АЦП, и выражении этих величин в виде чисел, состоящих из конечного числа бит. Причем числа могут быть не только целые, например 16-, 18-, 20-, 24-битные, но и 24- или 32-битные с плавающей запятой или с другой кодировкой (например, в кодах с исправлением ошибок), зависящей от конкретной реализации устройства АЦП. Довольно часто используется все же кодирование результатов измерения амплитуд отсчетов в виде целых чисел.

В обычном АЦП число бит на один отсчет (разрядность числа) выходного цифрового потока данных непосредственно с квантователя амплитуд дискретов и на выходе всего АЦП равны, так как числа с квантователя амплитуд поступают непосредственно на выход устройства. Однако, квантователь АЦП не обязательно должен иметь высокую разрядность для того, чтобы выходной поток цифровых данных АЦП имел таковую. Увеличение эффективной разрядности АЦП может быть достигнуто использованием метода увеличения частоты дискретизации (oversampling) и цифровой фильтрации.

3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)

Речь представляет собой колебания сложной формы, зависящей от произносимых слов, тембра голоса, интонации, пола и возраста говорящего.

Сжатие речи при ее передаче сокращает объем передаваемых данных, затраты и, благодаря этому, позволяет снижать цены на услуги и привлекать новых пользователей. Именно поэтому рынок цифровой телефонии развивается под непосредственным технологическим диктатом ученых и разработчиков кодеков речи.

Качество звучания сжатой речи в цифровой телефонии, мягко говоря, "не очень". Некоторые (из тех, конечно, кто имеет такой выбор) до сих пор предпочитают аналоговые сети цифровым, поскольку в последних речь часто звучит механически, случаются посторонние звуки и т. п. — и все из-за сжимающих кодеков речи, так как в остальном цифровые протоколы передачи обеспечивают лучшее качество звучания. В компьютерной телефонии снижению качества мы, помимо кодеков речи, обязаны заметным запаздываниям сигнала и ошибкам при сборке пакетов. Впрочем, это болезни роста: понятно, что если с кодеком на 2,4 кбит/с "узкий" канал справляется с трудом, то на скорости 1,2 кбит/с проблем будет меньше.

Спектр речи весьма широк (примерно от 50 до 10000 Гц), но для передачи речи в аналоговой телефонии когда-то отказались от составляющих, лежащих вне полосы 0,3-3,4 кГц, что ухудшило восприятие ряда звуков (например, шипящих, существенная часть энергии которых сосредоточена в верхней части речевого спектра), но мало затронуло разборчивость. Ограничение частоты снизу (до 300 Гц) также ухудшает восприятие из-за потерь низкочастотных гармоник основного тона. А в цифровой телефонии к влиянию ограничения спектра добавляются еще шумы дискретизации, квантования и обработки, дополнительно зашумляющие речь.

Решающими в выборе полосы 0,3-3,4 кГц были экономические соображения и нехватка телефонных каналов. Для совместимости по полосе с распространенными аналоговыми сетями в цифровой телефонии отсчеты аналоговой речи приходится брать согласно теореме Котельникова с частотой 8 кГц — не меньше двух отсчетов на 1 Гц полосы. Правда, в цифровой телефонии существует принципиальная возможность использовать спектр речи за пределами полосы 0,3-3,4 кГц и тем самым повысить качество, но эти методы не реализуются, так как они вычислительно пока еще очень сложны. При полосе исходного сигнала до 6 кГц и тактовой частоте отсчетов около 16 кГц сжатый цифровой сигнал требует для передачи канал в 12 кбит/с. При этом оценка качества по критерию MOS может быть выше 4,5 балла.

Озвученная речь, представляющая большую трудность для сжатия, образуется с помощью звуковых связок человека. Скорость их периодических колебаний задает так называемую частоту основного тона (ОТ) — периодическую подпитку энергией голосового тракта человека, который представляет собой объемный резонатор. Голосовой тракт формирует спектральную окраску речи, или, другими словами, ее формантную структуру. Другое название голосового тракта - синтезирующий фильтр — нам более удобно, так как математическое описание речеобразования обычно ведется в терминах линейной фильтрации. Тогда, условно, речевой сигнал можно разделить на две составляющие, отвечающие за 1- ый ОТ (возбуждение фильтра) и 2-ой голосовой тракт (формантная структура сигнала). Соответственно, большинство на сегодня используемых алгоритмов, так или иначе, решают один вопрос - как наиболее эффективно выделить и сокращенно описать обе составляющие. А отрезки глухой речи при моделировании заменяют спектрально окрашенным шумом.

Рассмотрим методы цифрового представления речи, к которым относятся: 1. прямое аналого- цифровое преобразование (или импульсно-кодовая модуляция, ИКМ); 2. эффективное кодирование речи, ЭКР (здесь можно выделить кодеры формы, вокодеры и кодеры, реализующие алгоритмы анализа через синтез).