Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы 60-90.docx
Скачиваний:
59
Добавлен:
15.09.2019
Размер:
163.64 Кб
Скачать

61 основные представления об экологии. Базовые экологические понятия и термины. Законы экологии.

(наука о взаимодействии организмов между собой и с окр средой. Ойкос – др гр – место пребывания человека. В сер 20 в наука о биосфере и экосистемах. Экосистема и биосфера – высшие уровни организации живого на Земле, способны к саморегуляции, т е к самосохранению, поддержанию видового состава, воспроизведению связей между отдельными видами. Осн понятия – антропогенная среда природная среда, измененная человеком, среда обитания – часть природной среды, окружающая живые организмы, с которой они взаимодействуют, экологический фактор – элемент окружающей среды, положительно или отрицательно воздействующий на живые организмы, который при своем изменении вызывает у организмов ответные приспособительные эколого-физиологические изменения, наследственно закрепляющиеся в процессе эволюции,окружающая среда – вещество, энергия и пространство, окружающие живые организмы и воздействующие на них, природная среда – совокупность природных абиотических и биотических факторов по отношению живых организмов независимо от контактов с человеком. Законы: Барри Коммонер – 1966 г: все связано со всем, все должно куда-то деваться, ничто не дается даром, природа знает лучше . Закон оптимума - любой экологический фактор имеет пределы положительного влияния на живые организмы. Закон экологической индивидуальности видов - был сформулирован в 1924 г. русским ботаником Л.Г. Раменским: экологические спектры (толерантность) разных видов не совпадает, каждый вид специфичен по своим экологическим возможностям. Закон лимитирующего фактора - наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Закон был установлен в 1905 г. английским ученым Блеккером. Закон неоднозначного действия - действие каждого экологического фактора неоднозначно на разных стадиях развития организма – для головастика вода нужна, для лягушки нет. Закон взаимодействия экологических факторов - оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору могут смещаться в зависимости от того, в сочетании с какими другими факторами осуществляется воздействие, учитывается в сх для поддержания оптимальных условий жизнедеятельности культурных растений - при угрозе заморозков на почве в ср полосе в мае растения обильно поливают.

(1866-1903 – анализ окружающей среды химическими, физическими и биологическими методами, 1904-1958 – анализ экологии отдельных видов животных и растений, 1959 – 1974 – изучение экосистем, 1975 – настоящее время – профилизация. Парадигма – пример, образец – система понятий, выражающая черты действительности или модель постановки постановки проблем и их решения. Три экологических парадигмы – аутэкологическая – условия среды определяют встречаемость и жизнедеятельность организмов, синэкологическая – взаимодействие организмов и популяций определяет встречаемость и жизнедеятельность организмов, системная – организмы и окружающая среда образуют экосистему в которой организмы влияют на среду, а среда на организмы. На современном этапе - варианты системной парадигмы – компонентный – компоненты биоценоза или биосферы, биогеоценотический – взаимодействие между собой и друг с другом, геоструктурный – природные компоненты в системной связи друг с другом и с человеческим обществом и с космической средой, биоцентрический – биотическая авторегуляция, как механизм состояния и саморазвития биотического комплекса, антропоцентрический – человек и общество составная часть биосферы). Две основные особенности системной парадигмы экологии по Соловьеву В.А. – единый подход к изучению природных комплексов и применение математических методов к экологическим объектам. Современный этап – биоэкология – взаимоотношения живых систем, геоэкология – динамика и взаимодействие геосфер, прикладная – принципы охраны природы.

62.ключевые задачи и объекты экологии. Современные представления о структуре экологии. Особенности биоэкологии и агроэкологии.

Экология является теоретической базой охраны природы и изучает различные закономерности и законы при взаимодействии организмов и окружающей среды. Структура экологии:

1) Аутэкология изучает экологию особей, то есть взаимодействие организмов с окружающей средой

2) Демэкология - экология популяций, их взаимоотношение с окружающей средой

3) Синэкология - экология сообществ, их взаимоотношение с окружающей средой

4) Экосистемная экология - изучает взаимоотношение сообществ с абиотической внешней средой.

Основные задачи экологии:

1) Разработка теорий функционирования систем

2) Оценка воздействия на структурно-функциональную организацию и динамику систем (всех иерархических уровней) внешних факторов, в том числе и антропогенных

3) Разработка теоретических основ конструирования устойчивых биогеоценозов с использованием моделирования и компьютеров

4) Разработка системы естественных тестов-индикаторов и критериев к наблюдениям за состоянием ЭС

5) Управление природными ресурсами

Объектами исследования экологии: являются биологические макросистемы (популяции, биоценозы) и их динамика во времени и пространстве. Биоэкология – отношение живых организмов между собой и окружающей средой. Агроэкология – взаимодействие человека с окружающей средой в процессе сх производства, влияние сх на природные комплексы и их компоненты, взаимодействие компонентов агроэкосистем и круговорот веществ в них, перенос энергии и функционирование в условиях техногенных нагрузок.

63. взаимодействие экологии, почвоведения и агрохимии. Экологическое почвоведение. Экологические основы агрохимии.

(Экология почв или интегральная экология почв - междисциплинарное научное направление, изучающее весь спектр участия различных факторов почвообразования в формировании, динамике и эволюции почв и всю совокупность экологических функций почв с ответным воздействием на почвообразователи и поддержанием их функционирования и развития. А также разрабатываемое на их основе учение о сохранении почв. Основные направления и задачи экологии почв - работы по биогеоценотическим и глобальным функциям почв, имеющие принципиальное значение не только для дальнейшего развития науки о почве, но и для всесторонней разработки учения о взаимосвязи и динамике приповерхностных геосфер, а также создания научно обоснованной системы рационального использования и охраны природных ресурсов. Анализ функций почв в экосистемах и биосфере позволяет поставить исследования взаимодействий почв и факторов среды в качестве особой проблемы и вести ее разработку на уровне изучения не только прямой, но и обратной связи. Исследуя общую экологическую роль почв и различные виды их влияния на атмосферные, гидрологические, биотические и другие компоненты экосистем биосферы, мы тем самым изучаем ответное воздействие самой почвы на факторы почвообразования. Однако проблема экологических функций почв шире и глубже анализа обратной связи в системе почва—факторы. Данная проблема охватывает дополнительный ряд не менее важных вопросов, касающихся, в частности, изучения внутренней жизни и функционирования почвенных систем в их взаимодействии со всеми звеньями природных комплексов. Почва оказалась планетарным узлом экологических связей с многочисленными глобальными функциями, деградация которых чревата для цивилизации самыми тяжелыми последствиями. Научные основы сохранения почв возникли как продолжение учения о экологических функциях почв, но имеют существенное отличие от охраны почв в традиционном ее понимании. Это отличие заключается в более широком функционально-экологическом подходе к проблеме сбережения почв и почвенного покрова. Если раньше охрана почв сводилась в основном к защите их от факторов разрушения (эрозии, дефляции, химического загрязнения и др.), то теперь она рассматривается лишь как важнейшая часть полнокомплексной системы сбережения почв в полном объеме - защита почв от прямого уничтожения и полной гибели, что предполагает ограничение отведения новых земель для строительства различных объектов, а также разрушающих военных испытаний и свалок, ограничение и запрещение открытых разработок полезных ископаемых, максимальное использование для промышленных и других объектов ранее выведенных их биосферы территорий и их участков. Другие блоки почвосохранения включают в себя защиту освоенных почв от качественной деградации, предотвращение негативных структурно-функциональных изменений освоенных почв, восстановление деградированных освоенных почв, сохранение и восстановление естественных почв как компонента биосферы. Указанный почвоохранный функционально-экологический биосферный подход, вытекающий из учения о почвенных экофункциях, знаменует собой важный прорыв в интеграции не только концептуального, но и прикладного знания и заставляет по-новому оценить всю природоохранную проблематику, поскольку в ней в связи с реализацией данного подхода появилась в качестве важнейшей составляющей особая охрана и Красная книга почв. Отставание развития особой охраны почв обусловлено рядом причин и прежде всего преобладанием утилитарной трактовки почвы в основном как объекта сельскохозяйственного процесса, главное назначение которого — получение урожая за счет обеспечения растений почвенными питательными веществами. Но начиная с 70-х годов такое понимание почвы не могло считаться удовлетворительным в связи с выходом публикаций по биогеоценотическим и биосферным функциям почв. Экофункции почв - Регулирование биогеохимических циклов элементов в биосфере. Регулирование состава атмосферы и гидросферы. Регулирование биосферных процессов. Накопление специфического органического вещества и энергии. Сохранение биологического разнообразия.)

64.окружающая среда. Экологические факторы. Основные факторы агрогенной и техногенной деградации экосистем.

(окружающая среда – вещество, энергия и пространство, окружающие живые организмы и воздействующие на них как положительно, так и отрицательно. Экологический фактор – элемент окружающей среды, положительно или отрицательно воздействующий на живые организмы, который при своем изменении вызывает у организмов ответные приспособительные эколого-физиологические изменения, наследственно закрепляющиеся в процессе эволюции. Классификация экофакторов - по происхождению – абиотические, биотические, природно-антропогенные, антропогенные, по среде возникновения (атмосферные, водные, орографические, эдафические, физиологические, популяционные, экосистемные, биосферные), по степени воздействия (летальные, экстремальные, лимитирующие, беспокоящие, мутагенные, тератогенные), по времени (эволюционные, исторические, действующие), по характеру действия (геофизические, географические, биогенные, биотические, эволюционные). абиотические – климатические, эдафические или почвенно-грунтовые – гранулометрический и химический состав почвы, ее физические свойства, орографические - условия рельефа. Биотические факторы – фитогенные – симбиоз, паразитизм и зоогенные – поедание, вытаптывание, опыление). Агрогенная деградация экосистем - переуплотнение, подкисление реакции, поступление к поверхности токсичных солей. Техногенная деградация экосистем - тяжелыми металлами, углеводородами, ядохимикатами, радионуклидами и пр.) - резкое изменение состава почвенных мигрантов и почвенного поглощающего комплекса и влияют на качественный и количественный состав почвенной биоты, вплоть до ее частичного или полного уничтожения. При этом трансформация вещественного состава почв может не вызывать изменения морфологического строения почвенного профиля. Чрезвычайно жесткая и продолжительная химическая агрессия на почву приводит к проявлению не только химического загрязнения, но и процессов химической трансформации морфологического строения почв, вплоть до стирания природных и образования новых техногенных горизонтов. Химическая трансформация может приводить к формированию горизонтов и новообразований, характерных для почв, формирующихся в иных природных условиях. Результатом названных процессов являются химически загрязненные и химически преобразованные почвы.

65. природная среда и закономерности действия экологических факторов. Лимитирующие экологические факторы.

(природная среда – совокупность природных абиотических и биотических факторов по отношению к живым организмам вне зависимости от контактов с человеком, включает географическую оболочку, биогенную среду и абиотическую среду. Каждый фактор имеет пределы положительного влияния на организмы. Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Степень выносливости к какому‑нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким‑либо отдельным факторам. Оптимальная зона и пределы выносливости организмов по отношению к какому‑либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов. Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

66. Классификация и свойства экологических систем. Оценка экологической функции продуцентов, консументов и редуцентов. Трофические связи.

(Экологическая система - единый природный или природно-антропогенный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные экологические компоненты соединены между собой причинно-следственными связями, обменом веществ и распределением потока энергии. Различают:

- микроэкосистемы, обычно составляющие индивидуальные консорции;

- мезоэкосистемы;

- макроэкосистемы. Для естественной экосистемы характерны три признака: 1) экосистема обязательно представляет собой совокупность живых и неживых компонентов , 2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие; 3) экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов. Фотосинтезирующие растения (продуценты), используя солнечную энергию, создают из углекислого газа и воды органическое вещество, другие его потребляют (консументы), третьи – разлагают органику до простых неорганических соединений и элементов, например, на СО2, NО2 и Н2О (редуценты). Солнечная энергия через растения как бы передается от организма к организму, образуя пищевую, или трофическую цепь. Продуценты, или автотрофы – это первый трофический уровень в пищевой цепи. К ним относятся фотосинтезирующие зеленые растения суши и водной среды, сине-зеленые водоросли, некоторые хемосинтезирующие бактерии. Консументы, или гетеротрофы – потребители готовых органических веществ. К ним относятся все животные и человек, насекомые, грибы и др. организмы. Гетеротрофы, потребляющие только растительную пищу – травоядные (корова, лошадь), или консументы 1 порядка или второй трофический уровень, питающиеся только мясом других животных - плотоядные, или зоофаги (хищники) – консументы 2 порядка, или третий трофический уровень, а также потребляющие и то и другое - «всеядные», или эврифаги (человек, вороны. медведь) – консументы 3 порядка или четвертый трофический уровень. Гетеротрофы, питающиеся отмершей органикой, называтся сапротрофами (например, грибы) а способные жить и развиваться в живых организмах за счет живых тканей – паразиты (например, клещи). Редуценты, или деструкторы – восстановители. Возвращая биогенные элементы из отмерших организмов снова в почву или в водную среду, они, тем самым, завершают биохимический круговорот вещества. Это бактерии, большинство разных микроорганизмов и грибы. В зависимости от среды обитания микроорганизмы и бактерии подразделяют на аэробные, т. е. живущие при наличии кислорода, и анаэробные – живущие в безкислородной среде. К редуцентам можно отнести и насекомых-сапротрофов, играющих большую роль в процессах разложения мертвой органики и почвообразовательных процессах. Функционально редуценты это те же самые консументы, поэтому их часто называют микроконсументами. От каждого предыдущего уровня до следующего доходит лишь 10% энергии, поэтому функциональные взаимосвязи, т. е. трофическая структура и представляется в виде пирамиды. Основанием экологических пирамид служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Три основных типа построения экологических пирамид: 1) пирамида чисел (пирамида Элтона), отражающая численность организмов на каждом уровне; 2) пирамида биомассы, характеризующая массу живого вещества (вес, калорийность и т. д.); 3) пирамида продукции (или энергии), показывающая изменение первичной продукции (или энергии) на последующих трофических уровнях. В наземных экосистемах действует следующее правило пирамиды биомассы: суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников.

67. учение о биосфере и этапы ее развития. Основные источники зарождения жизни на земле. Дивергентная и конвергентная эволюция биоты. Эволюция педосферы и биокосных тел.

(под биосферой понимается все пространство (оболочка Земли), где существует или когда-либо существовала жизнь, то есть где встречаются живые организмы или продукты их жизнедеятельности первое упоминание о геохимических идеях – 19 в Ламарк, 1863 – Э.Реклю – область распространения жизни на земной поверхности, 1875 год Э.Зюсс – особая оболочка земли, со всей совокупностью организмов, 1926 - Вернадский – определил пространство Земли, охватываемое биосферой – вся гидросфера, верхняя часть литосферы до 2-3 км, и нижняя часть атмосферы, до тропосферы, ввел понятие живое вещество как совокупность микроорганизмов, водорослей, грибов, растений, животных. Живое вещество по Вернадскому – это биогеохимический фактор планетарного масштаба, под воздействием которого преобразуется окружающая среда и сами живые организмы. Во всём процессе Э. б. и в каждом из периодов различают конвергентные и дивергентные стадии. В результате конвергентной стадии свойства живых объектов становятся одинаковыми (стадии образования единого кода и формирования вида). В дивергентной стадии вид расщепляется, т. е. из одной популяции образуются две (или более) различающиеся по свойствам популяции (стадии образования первичных гиперциклов, появления многообразия живых объектов, зарождения новых видов при освоении новой экологич. ниши, в частности новых источников питания и энергии). В процессе дивергентной стадии численность нового вида возрастает экспоненциально, затем рост прекращается, в конвергентной стадии численность постоянна. По исчерпании ресурсов экологич. ниши численность резко падает и часто вид исчезает; кривая зависимости численности от времени называется логистической. Переход от дивергентной фазы к конвергентной совершается быстро и сопровождается большими флуктуациями. Математическое моделирование переходных процессов в Эволюции биоты показывает, что часто они носят характер катастрофы. Роль почвы в развитии биосферы: Буфер, обеспечивающий устойчивость существования биогеноценоза; Фильтр, участвующий в регулировании состава природных вод и почвенного воздуха; Аккумулятор энергии (гумусообразование) и химических элементов (биогенное накопление); Биопротектор, связывающий часть загрязняющих веществ путем перевода их в недоступные для живых организмов формы; Источник информации о геохимических процессах в прошлом и настоящем. Эволюция почв и почвенного покрова: хронология появления и развития отдельных типов почв, общие закономерности эволюции педосферы. Онтогенез и филогенез почв, полигенетичность почв. Понятия: "почва - память", "почва - отражение", "почва – момент

68. глобальные экологические проблемы и принципиальные подходы к их разрешению. Антропогенные изменения педосферы. Антропогенное опустынивание.

Главная область беспокойства - сельское хозяйство, где возможность временно поправить ситуацию посредством внесения удобрений и пестицидов, введение искусственного полива, или же использование новых машин может временно отложить или скрыть наступающий кризис. С одной стороны, технологические вложения, лишь временно замещающие естественные факторы плодородия почв, приносят с собой ряд геоэкологических проблем. С другой стороны, сами эти технологические вложения есть продукт экологически неблагополучной промышленности или энергетики. В результате сельское хозяйство, играющее столь большую роль в трансформации экосферы, экологически весьма неустойчиво. Тревожное состояние ресурсной базы сельского хозяйства можно видеть в большинстве стран мира, от самых богатых и развитых до наиболее обнищавших. Казалось бы, можно полагать, что сельское хозяйство США - это блестящая демонстрация того, что может быть достигнуто при весьма благоприятных природных условиях, умелых, трудолюбивых и предприимчивых фермерах, значительных вложениях со стороны науки и техники в виде постоянно совершенствующихся машин, химикалиев, семян и пр. и благоприятной ситуации на мировом рынке сельскохозяйственных продуктов. И действительно, успехи весьма впечатляющие. Но нужно также помнить, что успехи американского сельского хозяйства идут во многом за счет потерь почвенных ресурсов, то есть вследствие его геоэкологической неустойчивости. Известно, что половина толщины почвенного слоя штата Айова исчезла за последние 150 лет. Говорят, что один мешок произведенного зерна кукурузы в этом штате уносит с собой вследствие эрозии два мешка почвы. Поэтому достижения в земледелии Айовы все более основываются на технологии и все менее на естественном плодородии почв. Но если столь значительная степень деградации характерна для штата и страны, располагающих высококлассной Службой охраны почв, то что говорить о большинстве стран? Выше приводился пример Индонезии, где весь прирост сельского хозяйства происходит из-за потери плодородия почв, и это не самый худший пример. Об антропогенной деградации почв России и бывшего СССР уже говорилось. Четыре самые крупные сельскохозяйственные страны мира, США, Китай, Индия и бывший СССР, используют несколько меньше половины пахотных земель мира, но потери от эрозии и засоления почв превышают 50% общемировых потерь. Геоэкологическая неустойчивость агроэкосистем отмечается на всех иерархических уровнях. Существует очень много примеров деградации почв на уровне поля вследствие эрозии, засоления, загрязнения, уплотнения почв. На уровне водосбора проявляются в основном проблемы химического характера, такие как увеличивающийся транспорт растворенных солей реками или рост концентрации нитратов в источниках водоснабжения. На глобальном уровне - нарушения, в основном, в социально-экономической сфере, но природные процессы также испытывают неблагоприятные воздействия. Например, животноводство Нидерландов в значительной степени зависит от производства корнеплодов (ямса, маниоки и пр.) в странах юго-восточной Азии, таких как Индонезия или Таиланд. В результате усиливается разрушение ресурсной базы в странах-производителях маниоки вследствие, например, эрозии почв, и возрастает загрязнение воды и почвы в Нидерландах вследствие избытка навоза, превышающего естественную способность его переработки на голландской территории. Несмотря на продолжающееся ухудшение ресурсной базы сельского хозяйства, растущее население мира должно быть обеспечено питанием. Необходим переход к экологически устойчивому сельскому хозяйству. Стратегия перехода - эффективное управление численностью населения, оптимизация качества питания взамен максимизации объема производства, устранение или снижение государственных субсидий сельскому хозяйству, экологически благоприятные методы ведения хозяйства. Они основаны на минимизации чуждых для природы агротехнических приемов, таких как применение пестицидов или минеральных удобрений. Это так называемое органическое земледелие. Его также называют биологическим, или экологическим (organic, biological, ecological farming). В среднем такой метод ведения хозяйства приносит меньшие урожаи, но их продукты отличаются высокими питательными качествами. Вследствие более высоких цен на такие продукты органическое земледелие может приносить не меньше дохода, чем высокотехнологичное сельское хозяйство. Однако доля площади, обрабатываемой с применением органического земледелия, не превышает нескольких процентов даже в передовых странах. При этом отмечается определенная, хотя и слабая, тенденция к росту. В качестве переходной, или компромиссной стратегии можно рассчитывать на снижение количества вносимых химических веществ (удобрений и пестицидов), более эффективное их применение, более эффективное управление оросительными системами, разумное ограничение в строительстве новых оросительных систем, применение менее тяжелых машин за более короткое время и пр. В Нидерландах за 10 лет (1983-1993 гг.) уровень применения минеральных удобрений сократился на 47%, оставаясь при этом все же очень высоким (560 кг/га). При высоком уровне применения удобрений растения слабо реагируют на сверхвысокие дозы, и потому экономичнее снизить интенсивность применения удобрений, получив в то же время несколько более низкий урожай. Меньшая масса применяемых удобрений приводит также к снижению уровня загрязнения окружающей среды (воды и почвы). От этой стратегии еще очень далеко до органического земледелия, но тенденция эта правильная, и она характерна для большинства развитых стран. Человечество достигло многого в производстве продуктов питания. Но цена была столь высока, что пришлось занимать ресурсы у внуков. Больше занимать нельзя. Более того, пришло время отдавать, и единственный путь к этому - общемировая трансформация сельского хозяйства в духе концепции устойчивого развития).

69.функционально-компонентный анализ зональных экосистем и агроэкосистем. Регионально-топологические формы экосистем и агроэкосистем.

(По размерности геосистемы в первом приближении делятся на локальные (топологические), региональные и глобальные. В общем виде экосистемы подразделяются на естественные (луг, тундра, пустыня, лес, озеро, море, океан) и искусственные (город, агроэкосистема, аквариум, космический корабль). По структурным признакам: наземные, пресноводные, морские. Согласно почвенно-экологическому зонированию выделяют: - зона использования земель в режиме сохранения. Режим сохранения предполагается для регионов, почвенный покров которых несет основную функциональную нагрузку в поддержании исторически сложившихся круговоротов веществ и энергии в биосфере. Это особая форма эксплуатации, направленная на сохранение экологических функций почв. - Зона экономически целесообразного использования земель. К этой зоне относятся территории, почвенный покров которых состоит из почв второй группы. Землепользование на данной территории должно быть организовано лишь с учетом анализа пригодности почв под желаемые, экономически допустимые и экологически разумные виды использования.

-Зона экологически адаптивного использования земель. Эта зона объединяет почвы третьей группы (с измененными ландшафтосберегающими функциями). При организации землепользования в пределах данной зоны также необходим учет пригодности почв под конкретные виды использования, но при этом, должен учитываться и факт экологической важности почв для ландшафта в целом. Это выражается в наличии определенных дополнительных ограничений на использование земель. Некоторые виды использования земель являются запрещенными для данной зоны в связи с тем, что подобное землепользование может функций почв и, соответственно, к неконтролируемым изменениям иных компонентов ландшафта.

-Зона использования земель в режиме восстановления. Данная зона включает почвы четвертой группы, которые обладали общебиосферными и/или ландшафтосберегающими функциями, но в результате нерационального использования они были нарушены, либо утрачены. Землепользование на данной территории должно быть организованно таким образом, чтобы придать почвам тренд к восстановлению их экологических функций.

70. аутэкология и факториальная экология. Анализ основных факторов окружающей среды (освещенность, температура, влажность).

(Аутэкология – влияние среды на организмы. Факториальная экология – исследование явлений, зависимостей и связей между организмами, популяциями, биоценозами и факторами среды. Теоретическая основа – закон единства организма и среды Вернадского – жизнь развивается в результате постоянного обмена веществом и информацией на базе потоков энергии в совокупном единстве среды и населяющих ее организмов. Освещенность - для фотосинтеза 380-710нм. 34 % отражается облаками, 19% поглощается атмосферой, 47% достигает Земли. Температура – пределы точка замерзания и до 40-45 ˚С, скорость ферментативных реакций в этих пределах удваивается на каждые 10 С. гомойотермные – теплокровные, поддерживают температуру тела. Имеют переменную температуру тела и относятся к группе пойкилотермных – холоднокровных. Порог развития – температура, при которой у пойкилотермных организмов восстанавливается обмен веществ после холодового угнетения. Температурные группы растений – нехолодостойкие, неморозостойкие, морозостойкие, нежаростойкие, жаростойкие, пирофиты. Температурные адаптации растений – биохимические – накопление анитфризов, физиологические – транспирация, морфологичесие – опушение, расположение листьев, отношение поверхность, объем. Влажность – давление пара над раствором, давление пара над чистой водой. Адаптации растений к недостатку воды – пойкилогидрические, гомойогидрические. Группы гомойогидрических – гидатофиты ряска, гидрофиты – назмно-водные - кубышка, гигрофиты – кислица, мезофиты – луговые травы, склерофиты – с толстой кутикулой – ковыль, суккуленты – сочные с водозапасающей паренхимой. Гетеротермные (суслики, ежи, летучие мыши, медведи). В активном состоянии у этих животных поддерживается постоянная относительно высокая температура тела. В зимнее время они впадают в спячку или глубокий сон, и температура тела у них в это время мало отличается от внешней. Уровень обмена веществ снижается.)

71. правило экологического оптимума. Точки экстремума. Зоны пессиума. Правило экологического индивидуализма, экологическая толерантность.

(Правило оптимума. В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (оптимального) значения фактора. За пределами зоны оптимума лежат зоны угнетения, переходящие в критические точки, за которыми существование невозможно). К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов (греч. эури - широкий; биос - жизнь). Организмы с узким диапазоном адаптации к факторам называются стенобионтами (греч. стенос - узкий). Важно подчеркнуть, что зоны оптимума по отношению к различным факторам различаются, и поэтому организмы полностью проявляют свои потенциальные возможности в том случае, если весь спектр факторов имеет для них оптимальные значения. Диапазон значений факторов (между критическими точками) называют экологической валентностью. Синонимом термина валентность является толерантность (лат. толеранция - терпение), или пластичность (изменчивость). Эти характеристики зависят в значительной мере от среды, в которой обитают организмы. Если она относительно стабильна по своим свойствам (малы амплитуды колебаний отдельных факторов), в ней больше стенобионтов (например, в водной среде), если динамична, например, наземно-воздушная - в ней больше шансов на выживание имеют эврибионты. Зона оптимума и экологическая валентность обычно шире у теплокровных организмов, чем у холоднокровных. Надо также иметь в виду, что экологическая валентность для одного и того же вида не остается одинаковой в различных условиях (например, в северных и южных районах в отдельные периоды жизни и т.п.). Молодые и старческие организмы, как правило, требуют более кондиционированных (однородных) условий. Иногда эти требования весьма неоднозначны. Например, по отношению к температуре личинки насекомых обычно стенобионтны (стенотермны), в то время как куколки и взрослые особи могут относиться к эврибионтам (эвритермным), наименьшее допустимое значение данного фактора – пессимум, нижний предел выносливости. Наивысшее допустимое значение фактора – максимум. Заключенный между пессимумом и максимумом диапазон изменчивости – пределы выносливости – валентности. Правило взаимодействия факторов. Сущность его заключается в том, что одни факторы могут усиливать или смягчать силу действия других факторов. Правило лимитирующих факторов. Сущность этого правила заключается в том, что фактор, находящийся в недостатке или избытке (вблизи критических точек) отрицательно влияет на организмы и, кроме того, ограничивает возможность проявления силы действия других факторов, в том числе и находящихся в оптимуме.)