Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы 37,38,39 Раднаева Ю..doc
Скачиваний:
15
Добавлен:
18.09.2019
Размер:
775.68 Кб
Скачать

37. Радиационный и тепловой режим атмосферы Земли.

Радиационный режим

Введение

Большинство происходящих в атмосфере явлений, изучаемых оптиками и метеорологами, развиваются за счет лучистой энергии, т.е. энергии, доставляемой Земле солнечной радиацией. Мощность этой энергии примерно может быть оценена в 18*1023 эрг/с. Энергетический спектр солнечной радиации на границе атмосферы близок к спектру абсолютно черного тела с температурой порядка 60000К (рис.1.[1]).

До того, как солнечное излучение достигнет поверхности, оно проделает длинный путь через земную атмосферу, где будет не только рассеяно и ослаблено, но и изменено по спектральному

Рис.1. Распределение энергии в спектре солнечной радиации на границе атмосферы: 1- по данным 1903-1910 гг., 2 - 1920-1922 гг., 3 - 1917 г., 4 - абсолютно черное тело при температуре 57130К.

составу. В результате дошедшая до места наблюдения (земной поверхности) в виде параллельных лучей от Солнца так называемая прямая солнечная радиация будет как количественно, так и качественно отлична от солнечной радиации за пределами атмосферы [1].

Солнечная (коротковолновая) радиация преобразуется, проходя через атмосферу, в следующие виды радиации: рассеянную (ввиду наличия в атмосфере различных ионов и молекул газов, частиц пыли происходит рассеяние прямой солнечной энергии во все стороны; часть рассеянной энергии доходит до поверхности Земли), отраженную (часть попавшей в атмосферу и на земную поверхность энергии отражается обратно), поглощенную (происходит диссоциация и ионизация молекул верхних слоях атмосферы, нагрев воздуха и самой земной поверхности, тех предметов, которые на ней находятся).

Спектр Солнца

Как видно из рис.1., энергетический спектр излучения близок к спектру абсолютно черного тела при температуре T~ 60000К, но не совпадает с ним, т.к. яркость солнечного диска планомерно уменьшается от его центра к краям. Наилучшей формой представления распределения энергии в солнечном спектре является формула В.Г. Кастрова:

l0,l *D l =0,021*l -23*exp(-0,0327*l -4)*D l [1] (1).

Формулы, описывающей распределение энергии Солнца на поверхности Земли пока не существует, т.к. в нее должно входить слишком много флуктуирующих параметров (плотность и высотное распределение газов, альбедо отражающих поверхностей, температура и т.п.).

Ослабление потоков лучистой энергии в атмосфере

Солнечное излучение, проходя через атмосферу, ослабляется благодаря эффектам рассеяния и поглощения. Для потоков лучистой энергии атмосфера в видимой части спектра является мутной средой, т.е. рассеивающей, а в ультрафиолетовой и инфракрасной - поглощающей и рассеивающей. Световой поток поглощается в атмосфере, причем количество энергии, дошедшей до поверхности Земли, можно найти из закона Бугера (закон ослабления света):

I=I0*exp(- )[3] (2),

где I0 - интенсивность падающего излучения (на границе атмосферы), Z0£ 750 (плоско-параллельная модель атмосферы), H - путь, пройденный светом до земной поверхности, k(h)- коэффициент поглощения (ослабления) светового потока, зависящий от высотного распределения плотности, состава атмосферы, физических и химических свойств газов, частиц, находящихся в атмосфере (рис.2.[1]).

Рассмотрим избирательное поглощение лучистой энергии в атмосфере. Любое вещество имеет свои полосы поглощения (рис.3.[1]). Из газов, входящих всегда в состав атмосферы, существенным для нас селективным поглощением обладают лишь O2, O3, CO2 и водяной пар H2O. Кислород вызывает интенсивное поглощение света

В далекой ультрафиолетовой области для длин волн l <200 нм, с максимумом поглощения около l =155нм. Поглощение в этой области спектра настолько велико уже в самых высоких слоях

 

Рис.2. Распределение энергии в нормальном солнечном спектре.

 

 

Рис.3. Спектр поглощения земной атмосферы.

атмосферы, что солнечные лучи с длиной волны l <200нм не доходят до высот, доступных для наблюдения с поверхности Земли и самолетов. Кислород также дает систему полос в видимой области спектра: A (759,4- 70,3 нм; l max=759,6 нм); B (686,8 - 694,6 нм; l max=686,9 нм). Углекислый газ (CO2) - основная узкая полоса с l max=4,3 мкм, остальные - слишком незначительны, поэтому не имеют для нас существенного значения. Озон (O3) имеет весьма сложный спектр поглощения, линии и полосы которого охватывают всю область солнечного спектра, начиная от крайних ультрафиолетовых лучей и до далекой инфракрасной области[1]. В земной атмосфере озона мало, он располагается в виде слоя (10 - 40 км) с центром тяжести на высоте около 22 км, но обладает сильной поглощательной способностью. Его полосы: п.Гартлея (200 - 320 нм; l max=255 нм); п.Шапюи (500 - 650 нм; l max=600 нм). Наибольшее значение в поглощении лучистой энергии в атмосфере имеет водяной пар (H2O), которого очень много в нашей атмосфере (влажность, облака и т.п.), его полосы поглощения: r s t (0,926 - 0,978 мкм; l max=0,935 мкм); F (1,095 - 1,165 мкм; l max=1,130 мкм); Y (1,319 - 1,498 мкм; l max=1.395); W (1,762 - 1.977 мкм; l max=1.870 мкм); C (2,520 - 2,845 мкм; l max=2,680 мкм). Наиболее точная формула для расчета величины поглощенной в атмосфере энергии солнечной радиации имеет вид:

D E=0,156*(m*v )0,294 кал/см2* мин.[2] (3),

где m - пройденный лучами путь, v - общее содержание водяного пара в вертикальном столбе атмосферы единичного сечения (1 см2). Далее рассмотрим атмосферные аэрозоли и пыль, их содержание зависит от высоты, они влияют на уменьшение прозрачности атмосферы.

Рассмотрим отраженную радиацию, т.е. радиацию, которая достигает земной поверхности, частично отражается от нее и вновь возвращается в атмосферу. Также отраженная радиация - это и излучение, отраженное от облаков.

Количество отраженной некоторой поверхностью энергии в сильной мере зависит от свойств и состояния этой поверхности, длины волны падающих лучей. Можно оценить отражательную способность любой поверхности, зная величину ее альбедо, под которым понимается отношение величины всего потока, отраженного данной поверхностью по всем направлениям, к потоку лучистой энергии, падающему на эту поверхность; обычно его выражают в процентах (ТАБЛИЦА 1[1]).

ТАБЛИЦА 1

ВИД ПОВЕРХНОСТИ

АЛЬБЕДО

СУХОЙ ЧЕРНОЗЕМ

14

ГУМУС

26

ПОВЕРХНОСТЬ ПЕСЧАНОЙ ПУСТЫНИ

28 -38

ПАРОВОЕ ПОЛЕ ( СУХОЕ)

8 - 12

ВЛАЖНОЕ ВСПАХАННОЕ ПОЛЕ

14

СВЕЖААЯ ( ЗЕЛЕНАЯ ) ТРАВА

26

СУХАЯ ТРАВА

19

РОЖЬ И ПШЕНИЕЦА

10 - 25

ХВОЙНЫЙ ЛЕС

10 - 12

ЛИСТВЕННЫЙ ЛЕС

13 - 17

ЛУГ

17 - 21

СНЕГ

60 - 90

ВОДНЫЕ ПОВЕРХНОСТИ

2 - 70

ОБЛАКА

60 - 80

Рассмотрим рассеянную радиацию. Рассеяние в атмосфере может происходить на молекулах газов (молекулярное рассеяние) и частицах (крупных (l <<r), средних (l ~ r), мелких (l >>r)), находящихся в атмосфере, оно зависит также и от наличия облачности. Основы этой теории заложены Рэлеем, но позже она была усоршенствована другими учеными уже для различных размеров, форм и свойств частиц. Для анализа явлений рассеяния используют уравнение переноса излучения; запишем его в векторной форме[3:  (4),

где Si - параметры Стокса (S1=I - суммарная интенсивность, S2=I*p*cos(Y 0), Y 0 - угол поворота направления максимальной поляризации относительно плоскости референции, p - степень линейной поляризации, S3=I*p*sin(Y 0), S4=I*q, q - степень эллиптичности поляризации),fij - матрица рассеяния. При молекулярном рассеянии диполи под действием падающей волны начинают двигаться с ускорением, следовательно излучают волны с частотой падающей волны, т.е. происходит рассеяние света на данных молекулах. Рассмотрим коэффициент молекулярного ослабления kMS и учтем, что рассеяние должно происходить тогда, когда показатель преломления частицы относительно среды n не равен единице, тогда:

 [3] (5) (l << r),

где N - число частиц в единице объема, l - длина падающей волны. Также запишем функцию, показывающую “разбрасывание света по углам”:

fMS(j )=3*t MS*(1+cos2(j ))/(16*p )[3] (6),

где t MS - оптическая толща молекулярного рассеяния. Если ввести параметр D , характеризующий анизотропию молекул, то формула (6) примет вид:

fMS(j )=3*t MS*(1+D +(1-D )*cos2(j ))/(16*p )[3] (7)

Обычно молекулярный рассеянный свет поляризован:

 [3](8),

где Pлин - степень линейной поляризации.

При попадании света на крупные частицы, обычно находящиеся вблизи поверхности Земли, происходит частичная потеря импульса падающей электро-магнитной волны, т.е. на молекулу действует световое давление, тогда будем иметь эффекты дифракции, отражения и преломления, пронукновения электро-магнитной волны вовнутрь частицы. В результате может возникнуть интерференция падающей волны и вышедшей из частицы за счет явления внутреннего отражения. Все эти явления описываются в теории Ми. Предположения теории Ми: частицы сферические, однородные, не сталкиваются; атмосфера - плоско-параллельный слой. Т.к. показатель преломления частиц, описываемых теорией Ми, - комплексный: m=n+i *c , где n - обычный показатель преломления, c - характеризует поглощение волны частицей.

В результате рассеяния прямого солнечного излучения в атмосфере, она сама становится источником излучения, которое достигает земной поверхности в виде рассеянного излучения. Максимум в спектре рассеянной радиации смещен в более коротковолновую область, чем у солнечного спектра; также состав рассеянной радиации зависит от высоты Солнца (рис.4.[1]).

Рис.4. Распределение энергии в спектре рассеянного света, посылаемого различными точками небесного свода.

Рассеянная радиация также зависит и от облачности, что проиллюстрировано на рис.5.[1], который построен по экспериментальным данным для г. Павловска. Нередки случаи, когда рассеянная радиация достигает значений, сравнимых с потоком прямой солнечной радиации[1]. Это явление обычно происходит в северных широтах. Оно объяснимо тем, что чистый сплошной снежный покров имеет черезвычайно большую отражательную способность. Облака являются средами, которые могут сильно рассеивать свет; опыты показали, что плотные облака толщиной 50 - 100 метров уже полностью рассеивают прямые солнечные лучи.

Рис.5. Рассеянная радиация атмосферы при безоблачном небе и при сплошной облачности (10 баллов).

Атмосферный режим

Воздух нижнего слоя атмосферы нагревается за счет передачи ему тепла от подстилающей поверхности. Важную роль в переносе тепла от деятельной поверхности в вышележащие слои тропосферы играет турбулентный (беспорядочный) теплообмен и передача скрытой теплоты парообразования.

Беспорядочное движение частиц воздуха, вызванное его нагреванием от неравномерно нагретой подстилающей поверхности, называются термической турбулентностью или термической конвекцией. Если вместо мелких хаотически движущихся вихрей начинают преобладать мощные восходящие (термики) и менее мощные нисходящие движения воздуха, конвекция называется упорядоченной.

Нагревающийся от поверхности воздух устремляется вверх, перенося тепло. Термическая конвекция может развиваться до тех пор, пока воздух имеет температуру выше температуры той среды, в которой он поднимается, Если температуры поднимающегося воздуха и окружающего воздуха сравняются, то поднятие прекратится.

Количество тепла, получаемое воздухом от поверхности посредством турбулентности, больше количества тепла, получаемого им в результате излучения в 400 раз, а в результате передачи путем молекулярной теплопроводности – почти в 500 000 раз.

В поднимающемся воздухе температура изменяется вследствие адиабатического процесса (за счет преобразования внутренней энергии газа в работу и работы во внутреннюю энергию). Поднимающийся воздух расширяется, производит работу, на которую затрачивает внутреннюю энергию, и температура его понижается. Опускающийся воздух, наоборот, сжимается, затраченная на это энергия освобождается, и температура воздуха растет.

Сухой или содержащий водяные пары, но ненасыщенный ими воздух, поднимаясь, адиабатически охлаждается на 1º на каждые 100 м. Воздух, насыщенный водяными парами, при подъеме на 100 м охлаждается на 0,6о, т.к. в нем происходит конденсация, сопровождающаяся выделением тепла.

При опускании и сухой и влажный воздух нагревается одинаково, поскольку при этом конденсации влаги не происходит. На каждые 100 м спуска воздух нагревается на 1º.

Распределение тепла в нижнем слое атмосферы может иметь и обратный порядок. Возрастание температуры с высотой называют инверсией, а слой, в котором температура с высотой возрастает, – слоем инверсии.

Виды инверсии:

-       Радиационная инверсия – инверсия излучения, образуется после захода Солнца, когда солнечные лучи нагревают верхние слои;

-       Адвективная инверсия – образуется в результате вторжения (адвекции) теплого воздуха на холодную поверхность;

-       Орографическая инверсия – холодный воздух стекает в понижения и там застаивается.

 

Суточный и годовой ход температуры в нижнем слое тропосферы до высоты 2 км, в общем, отражает ход температуры поверхности. С удалением от поверхности амплитуды колебаний температуры уменьшаются, а моменты максимума и минимума запаздывают.

Суточные колебания температуры воздуха зимой заметны до высоты 0,5 км, летом – до 2 км. В слое мощностью 2 м суточный максимум обнаруживается около 14-15 часов, а минимум после восхода Солнца. Амплитуда суточных температур с увеличением широты места уменьшается. Наибольшая в субтропиках, наименьшая – в полярных широтах.

Годовой ход температуры зависит от широты места. От экватора к полюсам годовая амплитуда колебаний температуры воздуха увеличивается. Выделяют 4 типа годового хода температуры по величине амплитуды и по времени наступления крайних температур.

Экваториальный тип – два максимума (после моментов равноденствия) и два минимума (после моментов солнцестояния). Амплитуда над океаном около 1º, над сушей – до 10º. Температура весь год положительная.

Тропический тип – один максимум (после летнего солнцестояния) и один минимум (после зимнего солнцестояния). Амплитуда над океаном – около 5º, на суше – до 20º. Температура весь год выше +15ºС.

Умеренный тип – один максимум (над сушей в июле в северном полушарии, над океаном – в августе) и один минимум (на суше в январе в северном полушарии, над океаном – в феврале), четыре сезона года. Годовая амплитуда температуры увеличивается с увеличением широты и по мере удаления от океана: на побережье 10º, вдали от океана – 60º и более. Температура в холодный сезон отрицательная.

Полярный тип – зима очень продолжительная и холодная, лето короткое и прохладное. Годовая амплитуда 25ºС и более (над сушей до 65º). Температура большую часть года отрицательная.

Усложняющими факторами годового хода температуры являются характер подстилающей поверхности (растительность, снежный или ледовый покров), высота местности, удаленность от океана, вторжение отличных по термическому режиму воздушных масс.

ЭКСТРЕМАЛЬНЫЕ ТЕМПЕРАТУРЫ МАТЕРИКОВ И ОСТРОВОВ ОКЕАНИИ

Регион

Максимальная температура, °С

Место

Минимальная температура,  °С

Место

Северная Америка

57

Долина Смерти,Калифорния, США

–66

Нортис, Гренландия1

Южная Америка

49

Ривадавия, Аргентина

–33

Сармьенто, Аргентина

Европа

50

Севилья, Испания

–55

Усть-Щугор, Россия

Азия

54

Тират-Зеви, Израиль

–72

Оймякон, Россия

Африка

58

Эль-Азизия, Ливия

–24

Ифран, Марокко

Австралия

53

Клонкарри, Австралия

–22

Шарлотт-Пасс, Австралия

Антарктида

14

Эсперанса, Антарктическийполуостров

–89

Станция Восток,Антарктида

Океания

42

Тугегарао, Филиппины

–10

г. Халеакала, Гавайскиеострова, США

1 В материковой части Северной Америки минимальная зарегистрированная температура составила –63° С (Снаг, Юкон, Канада)

 

Годовая амлитуда температуры воздуха и континентальность климата

Континентальность климата, совокупность свойств климата, определяемых влиянием больших площадей суши на атмосферу и климатообразующие процессы. Основные различия в климате материков и океанов обусловлены особенностями накопления ими тепла. Поверхности материков быстро и сильно нагреваются днём и летом и охлаждаются ночью и зимой. Над океанами этот процесс замедлен, поскольку водные массы в тёплое время суток и года накапливают в глубоких слоях большое количество тепла, которое постепенно возвращают в атмосферу в холодное время. Поэтому температура воздуха и др. характеристики климата меняются (от дня к ночи и от лета к зиме) над материками сильнее, чем над океанами (см. Континентальный климат,Морской климат). Перемещение воздушных масс приводит к распространению влияния океанов на климат прилегающих частей материков и к обратному воздействию материков на климат океанов. Т. о., климат может обладать большей или меньшей континентальностью (или океаничностью), поддающейся количественному выражению; чаще всего К. к. рассматривается как функция годовой амплитуды температуры воздуха.

Во внетропических широтах непериодические изменения температуры воздуха настолько часты и значительны, что суточный ход температуры отчетливо проявляется лишь в периоды относительно устойчивой малооблачной антициклонической погоды. В остальное время он затушевывается непериодическими изменениями, которые могут быть очень интенсивными. Например, похолодания зимой, когда температура в любое время суток может упасть (в континентальных условиях) на 10-20° С в течение одного часа.

В тропических широтах непериодические изменения температуры менее значительны и не так сильно нарушают суточный ход температуры.

Непериодические изменения температуры связаны главным образом с адвекцией воздушных масс из других районов Земли. Особенно значительные похолодания (иногда называемые волнами холода) происходят в умеренных широтах в связи с вторжениями холодных воздушных масс из Арктики и Антарктиды. В Европе сильные зимние похолодания бывают также при проникновении холодных воздушных масс с востока, а в Западной Европе - с европейской территории России. Холодные воздушные массы иногда проникают в Средиземноморский бассейн и даже достигают Северной Африки и Передней Азии. Но чаще они задерживаются перед горными хребтами Европы, расположенными в широтном направлении, особенно перед Альпами и Кавказом. Поэтому климатические условия Средиземноморского бассейна и Закавказья значительно отличаются от условий близких, но более северных районов.

В Азии холодный воздух свободно проникает до горных хребтов, ограничивающих с юга и востока территорию среднеазиатских республик, поэтому зимы на Туранской низменности достаточно холодны. Но такие горные массивы, как Памир, Тянь-Шань, Алтай, Тибетское нагорье, не говоря уже о Гималаях, являются препятствиями для дальнейшего проникновения холодных воздушных масс к югу. В редких случаях значительные адвективные похолодания наблюдаются, однако, и в Индии: в Пенджабе в среднем на 8 - 9° С, а в марте 1911 г. температура упала на 20° С. Холодные массы при этом обтекают горные массивы с запада. Легче и чаще холодный воздух проникает на юго-восток Азии, не встречая по пути значительных преград.

В Северной Америке нет горных хребтов, проходящих в широтном направлении. Поэтому холодные массы арктического воздуха могут беспрепятственно распространяться до Флориды и Мексиканского залива.

Над океанами вторжения холодных воздушных масс могут глубоко проникать в тропики. Конечно, холодный воздух постепенно прогревается над теплой водой, но все же он может вызывать заметные понижения температуры.

Вторжения морского воздуха из средних широт Атлантического океана в Европу создают потепления зимой и похолодания летом. Чем дальше в глубь Евразии, тем меньше становится повторяемость атлантических воздушных масс и тем больше меняются над материком их первоначальные свойства. Но все же влияние вторжений с Атлантики на климат можно проследить вплоть до Среднесибирского плоскогорья и Средней Азии.

Тропический воздух вторгается в Европу и зимой, и летом из Северной Африки и из низких широт Атлантики. Летом воздушные массы, близкие по температуре к воздушным массам тропиков и поэтому также называемые тропическим воздухом, формируются на юге Европы или приходят в Европу из Казахстана и Средней Азии. На Азиатской территории России летом наблюдаются вторжения тропического воздуха из Монголии, Северного Китая, из южных районов Казахстана и из пустынь Средней Азии.

В отдельных случаях сильные повышения температуры (до +30° C) при летних вторжениях тропического воздуха распространяются до Крайнего Севера России.

В Северную Америку тропический воздух вторгается как с Тихого, так и с Атлантического океана, особенно с Мексиканского залива. На самом материке массы тропического воздуха формируются над Мексикой и югом США.

Даже в области Северного полюса температура воздуха зимой иногда повышается до нуля в результате адвекции из умеренных широт, причем потепление можно проследить во всей тропосфере.

Перемещения воздушных масс, приводящие к адвективным изменениям температуры, связаны с циклонической деятельностью.

В менее значительных пространственных масштабах резкие непериодические изменения температуры могут быть связаны с фенами в горных районах, т.е. с адиабатическим нагреванием воздуха при его нисходящем движении.

Так как непериодические изменения температур каждый год происходят по- разному, то и средняя годовая температура воздуха в каждом отдельном пункте в разные годы различна. Так, в Москве в 1862 г. средняя годовая температура была +1,2° C, в 1925 г. +6,1° С. Средняя температура того или иного месяца в отдельные годы варьирует в еще более широких пределах, особенно для зимних месяцев. Так, в Москве за 170 лет средняя температура января колебалась в пределах 19° С (от -21 до -2° С), а июля —в пределах 7° С (от +15 до +22° С). Но это крайние пределы колебаний. В среднем температура того или другого месяца отдельного года отклоняется от многолетней средней для этого месяца зимой примерно на 3° С и летом на 1,5° С в ту или другую сторону [2].

Отклонение средней месячной температуры от климатической нормы называют аномалией средней месячной температуры данного месяца. Среднюю многолетнюю величину из абсолютных значений месячных аномалий температуры можно принять за меру изменчивости, которая тем больше, чем интенсивнее непериодические изменения температуры в данной местности, придающие одному и тому же месяцу в разные годы различный характер. Поэтому изменчивость средних месячных температур возрастает с широтой: в тропиках она небольшая, в умеренных широтах значительная, в морском климате меньше, чем в континентальном. Особенно велика изменчивость в переходных областях между морским и континентальным климатом, где в одни годы могут преобладать морские воздушные массы, в другие — континентальные [8].

Континентальность климата. Климат над морем, характеризующийся малыми годовыми амплитудами температуры, естественно назвать морским в отличие от континентального климата над сушей с большими годовыми амплитудами температуры. Морской климат распространяется и на прилегающие к морю области материков, над которыми велика повторяемость морских воздушных масс. Можно сказать, что морской воздух приносит на сушу морской климат. Области океанов, где преобладают воздушные массы с близлежащего материка, обладают скорее континентальным, чем морским, климатом.

Хорошо выражен морской климат в Западной Европе, где круглый год господствует перенос воздуха с Атлантического океана. На крайнем западе Европы годовые амплитуды температуры воздуха всего несколько градусов. С удалением от Атлантического океана в глубь материка годовые амплитуды температуры растут. Иначе говоря, растет континентальность климата. В Восточной Сибири годовые амплитуды достигают нескольких десятков градусов. Лето здесь более жаркое, чем в Западной Европе, зима гораздо более суровая. Близость Восточной Сибири к Тихому океану не имеет существенного значения, так как вследствие условий общей циркуляции атмосферы воздух с этого океана не проникает далеко в Сибирь, особенно зимой. Только на Дальнем Востоке приток воздушных масс с океана летом понижает температуру и тем самым несколько уменьшает годовую амплитуду.

 Годовой ход температуры воздуха

Все воздушные массы зимой холоднее, а летом теплее, поэтому температура воздуха в каждом отдельном месте меняется в годовом ходе: средние месячные температуры в зимние месяцы ниже, в летние - выше. Вычислив для какого-либо места средние месячные температуры по многолетнему ряду наблюдений, увидим, что они плавно меняются от одного месяца к другому, повышаясь от января или февраля к июлю или августу и затем понижаясь.

Годовой ход температуры воздуха определяется, прежде всего, годовым ходом температуры деятельной поверхности. Амплитуда годового хода представляет собой разность среднемесячных температур самого теплого и самого холодного месяцев.

В северном полушарии на континентах максимальная среднемесячная температура воздуха наблюдается в июле, минимальная - в январе. На океанах и побережьях материков экстремальные температуры наступают несколько позднее: максимум - в августе, минимум - в феврале-марте. На суше амплитуды годового хода температуры воздуха значительно больше, чем над водной поверхностью. Даже над сравнительно небольшими материковыми массивами Южного полушария они превышают 15°С, а под широтой 60° на материке Азии (в Якутии) они достигают 60°С [3].

Не только моря, но и большие озера уменьшают годовую амплитуду температуры воздуха и смягчают климат. Посредине озера Байкал годовая амплитуда температуры воздуха 30-31°С, на его берегах около 36°С, а под той же широтой на р. Енисей 42°С. Аналогичное влияние на температуру воздуха наблюдается на озерах Иссык-Куль, Ладожском, Севан и других [9].

Годовая амплитуда температуры воздуха растет, с географической широтой. На экваторе приток солнечной радиации меняется в течение года очень мало. По направлению к полюсу различия в поступлении солнечной радиации между зимой и летом возрастают, а вместе с ними возрастают и годовые амплитуды температуры воздуха. Над океаном вдали от берегов широтное изменение годовой амплитуды невелико. Если бы Земля была сплошь покрыта океаном, свободным ото льда, то годовая амплитуда температуры воздуха менялась бы от нуля на экваторе до 5 - 6° С на полюсе. В действительности над южной частью Тихого океана вдали от материков годовая амплитуда между 20 и 60° ю. ш. увеличивается приблизительно с 3 до 5° С. Над более узкой северной частью Тихого океана, где больше влияние соседних материков, амплитуда между 20 и 60° с. ш. растет уже с 3 до 15° С.

Большое влияние оказывают на годовой ход температуры воздуха погодные условия: туман, дождь и главным образом облачность. Отсутствие облачности зимой приводит к понижению средней температуры самого холодного месяца, а летом - к повышению средней температуры самого теплого месяца.

Малые амплитуды наблюдаются и во многих областях над сушей и даже вдали от береговой линии, если в эти области часто приходят воздушные массы с моря (Западная Европа). Повышенные амплитуды наблюдаются и над океаном, если в эти районы часто попадают воздушные массы с материка, например в западных частях океанов Северного полушария. Следовательно, величина годовой амплитуды температуры зависит не просто от характера подстилающей поверхности или от близости данного места к береговой линии, а от повторяемости в данном месте воздушных масс морского и континентального происхождения, т. е. от условий общей циркуляции атмосферы [2].

С высотой годовая амплитуда температуры убывает. В горах внетропического пояса температура убывает в среднем на 2° С на каждый километр высоты, в свободной атмосфере больше. На рис. 1 видно, что над океаном к югу от Японии годовая амплитуда даже в пределах нижних 100 м. убывает вдвое. Во внетропических широтах значительный годовой ход температуры остается даже в верхней тропосфере и стратосфере. Он определяется сезонным изменением условий поглощения и отдачи радиации не только земной поверхностью, но и воздухом [10].

Годовой ход температуры воздуха в разных географических зонах разнообразен. По величине амплитуды и по времени наступления экстремальных температур выделяют четыре типа годового хода температуры воздуха.

1. Экваториальный тип. В экваториальной зоне в году наблюдаются два максимума температуры - после весеннего и осеннего равноденствия, когда солнце над экватором в полдень находится в зените, и два минимума - после зимнего и летнего солнцестояния, когда солнце находится на наименьшей высоте. Амплитуды годового хода здесь малы, что объясняется малым изменением притока тепла в течение года. Над океанами амплитуды составляют около 1 °С, а над континентами 5-10 °С. 2.Тропический тип. В тропических широтах наблюдается простой годовой ход температуры воздуха с максимумом после летнего и минимумом после зимнего солнцестояния. Амплитуды годового хода по мере удаления от экватора увеличиваются зимой. Средняя амплитуда годового хода над материками составляет 10 - 20° С, над океанами 5 - 10° С. 3. Тип умеренного пояса. В умеренных широтах также отмечается годовой ход температуры с максимумом после летнего и минимумом после зимнего солнцестояния. Над материками северного полушария максимальная среднемесячная температура наблюдается в июле, над морями и побережьями - в августе. Годовые амплитуды увеличиваются с широтой. Над океанами и побережьями они в среднем составляют 10-15° С, а на широте 60° достигают 60° С. 4.Полярный тип. Полярные районы характеризуются продолжительной холодной зимой и сравнительно коротким прохладным летом. Годовые амплитуды над океаном и побережьями полярных морей составляют 25-40° С, а на суше превышают 65° С. Максимум температуры наблюдается в августе, минимум - в январе.

Рассмотренные типы годового хода температуры воздуха выявляются из многолетних данных и представляют собой правильные периодические колебания. В отдельные годы под влиянием вторжений теплых и холодных масс возникают отклонения от приведенных типов [1].

Тепловой баланс системы Земля-атмосфера

ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ -баланс энергии тепловых и радиац. процессов в атмосфере и на поверхности Земли. Осн. приток энергии в систему атмосфера - Земля обусловлен солнечным излучением в спектральном диапазоне от 0,1 до 4 мкм (коротковолновая радиация - КВР). Он характеризуется ср. энергией КВР, падающей на единичную площадку на верх. границе атмосферы З е м л и - и н с о л я ц и е й - Е0. В атмосфере часть этой энергии (E1 - Е4)поглощается облаками, аэрозолем и газами, часть (E4.) рассеивается и отражается в космос (см. рис.). (При рассмотрении Т. б. 3. обычно оперируют усреднёнными по времени и по поверхности, охватывающей Землю в пределах атмосферы, потоками энергии. через единичную площадку; пренебрегают толщиной атмосферы по сравнению с радиусом Земли.) До поверхности Земли доходит часть КВР, равная Е2. Часть КВР (E3) отражается поверхностью Земли и уходит в космос (т.о., Е23 поглощается Землёй). Общий поток энергии КВР, уходящий в космос, равен АЕ0, где А-альбедо системы атмосфера-Земля.

Помимо КВР в Т. б. 3. существенную роль играет тепловое излучение атмосферы и поверхности Земли (длинноволновая радиация - ДВР, длины волн от 3 до 45 мкм). Поверхностью Земли поглощается противоизлучение атмосферы (часть ДВР атмосферы, направленная к Земле) F1. Энергия КВР и ДВР, поглощённая поверхностью Земли, расходуется на теплообмен с нижележащими слоями суши и гидросферы, турбулентный теплообмен с атмосферой, испарение воды и льда с поверхности Земли, создание океанич. циркуляции, переносящей тепло из низкоширотных в высокоширотные районы Земли, и на тепловое излучение поверхности Земли с потоком энергии F2.

Часть КВР (Е1 - Е4)и поглощённая облаками, атм. газами и аэрозолем часть ДВР, излучённой поверхностью Земли (F3), а также выделившаяся в атмосфере при конденсации паров воды энергия расходуются на поддержание распределения темп-ры в атмосфере, на создание атм. циркуляции, переносящей явное и скрытое тепло из низкоширотных в высокоширотные районы Земли, на противоизлучение атмосферы (F1) и на излучение атмосферой ДВР в космос (F4). В космос уходит также часть ДВР поверхности Земли (F5). Общее кол-во уходящей в космос от планеты ДВР равно F0.

"Мгновенные" (не усреднённые) значения указанных величин существенно изменяются в течение суток, года и в зависимости от широты и долготы рассматриваемого района. В климатологии принято рассматривать среднегодовой глобальный Т. б. 3. Среднегодовые темп-ры поверхности Земли и атмосферы практически постоянны, что свидетельствует о нулевом Т, б, 3. Ур-ние среднегодового глобального Т. б, 3. записывается в виде равенства суммы поглощённой атмосферой и поверхностью Земли энергии КВР величине уходящей от планеты энергии ДВР:

Ур-ния теплового баланса поверхности Земли и теплового баланса атмосферы:

где Q1=88 Вт.м -2- кол-во тепла, расходуемое на испарение воды с подстилающей поверхности Земли; Q2= 17 Вт.м-2-кол-во тепла передаваемого поверхностью Т. б. З. определяет важнейшую для климатологии величину теплового излучения поверхности Земли -F2, соответствующую среднегодовой темп-ре поверхности Земли +14,2 °С. Эта темп-pa определяет климат Земли, F2 определяется поглощённой поверхностью Земли КВР (Е2- Е3)и противоизлучением атмосферы F1. Удивительно то, что F1 больше величины поглощённой атмосферой КВР (Е1 - Е4). Это явление, наз. парниковым эффектом подстилающей поверхности, обусловливает возможность существования жизни на Земле. Характеристикой парникового эффекта является величина (F2 - F1), к-рую наз. эфф, излучением поверхности Земли.

При одной и той же величине инсоляции Е0 климат на Земле может быть и более тёплым, и более холодным в зависимости от изменения альбедо системы Земля - атмосфера и парникового эффекта.

Климатообразование

Образование определенных климатических условий на Земле в целом или в определенных ее районах в результате тех атмосферных процессов, которые называются климатообразующими и протекают при воздействии определенных географических факторов климата.

Климаты Земли

Классифика́ция кли́матов А́лисова — одна из систем классификации типов климата. Предложена Борисом Петровичем Алисовым в 1936 году.

Б. П. Алисов предложил выделять климатические зоны и области исходя из условий общей циркуляции атмосферы. Семь основных климатических зон: экваториальную, две тропические, две умеренные и две полярные (по одной в каждом полушарии) – он выделяет как такие зоны, в которых климатообразование круглый год происходит под преобладающим воздействием воздушных масс только одного типа: экваториальноготропическогоумеренного(полярного) и арктического (в южном полушарииантарктическоговоздуха.

Между ними Алисов различает шесть переходных зон, по три в каждом полушарии, характеризирующихся сезонной сменой преобладающих воздушных масс. Это две субэкваториальные зоны, или зоны тропических муссонов, в которых летом преобладает тропический, а зимой полярный воздух; две субтропические; зоны субарктическая и субантарктическая, в которых летом преобладает полярный, а зимой арктический или антарктический воздух. Границы зон определяются по среднему положению климатологических фронтов. Так, тропическая зона находится между летним положением тропических фронтов и зимним положением полярных фронтов. Поэтому она будет круглый год занята преимущественно тропическим воздухом.Субтропическая зона находится между зимним и летним положением полярных фронтов; поэтому она и будет зимой находится под преобладающим воздействием полярного воздуха, а летом – тропического воздуха. Аналогично определяется и границы других зон.

ОСНОВНЫЕ ФАКТОРЫ ФОРМИРОВАНИЯ КЛИМАТА (по Ю.Г. Хабутдинову)

Климатическая система, глобальный и локальный климат

Климатическая система - атмосфера, гидросфера, литосфера, криосфера и биосфера.  Глобальный климат - статистическая совокупность состояний, проходимых климатической системой за периоды времени в несколько десятилетий. Компоненты климатической системы и различные процессы, влияющие на формирование и изменения климата, делят на внешние и внутренние.

К внешним процессам относят:

приток солнечной радиации

изменения состава атмосферы, вызванные процессами в литосфере и притоком аэрозолей и газов из космоса

изменения очертаний океанов, суши, орографии, растительности

К внутренним процессам относят:

взаимодействия атмосферы с океаном, с поверхностью суши и льдом  (теплообмен, испарение, осадки)

взаимодействие лед-океан

изменение газового и аэрозольного состава атмосферы

облачность

снежный и растительный покров

рельеф и очертания материков

Распределение метеорологических величин в пространстве и во времени определяет распределение локальных климатов на земном шаре.

Локальный климат - совокупность атмосферных условий за многолетний период, характерный для данной местности в зависимости от ее географического положения.

Принципы классификации климатов

Для анализа закономерностей формирования климатов в рамках глобальной системы и решения практических задач необходимо знать распределение климатических величин по земному шару или району, а также климатического комплекса в целом. В зависимости от задачи исследования существуют различные подходы к классификации климатов. Если это делается для целей анализа происхождения самого климата или для увязки с комплексом природных условий (ландшафтно-географических зон), то такое разделение климатов называется климатической классификацией, а если для прикладных целей (обслуживание сельского хозяйства, строительства, транспорта) - климатическим районированием. Классификации климатов и районирования многочисленны и определяются различными задачами. Существуют классификации, увязывающие с климатом распространение растительности, почв, речной сети, рельефа в целом или изучающие закономерности формирования из локальных климатов глобальной климатической системы. Современные классификации и районирования не ограничиваются разделением климатов, они также выявляют их систему, тем самым обращая внимание и на их сходство.

Известный советский климатолог Б. П. Алисов создал классификацию климатов с учетом циркуляции атмосферы. Он выделил семь основных климатических областей: экваториальную, по две тропические, умеренные и полярные. Но кроме них Б. П. Алисов предлагает выделить шесть переходных зон — две зоны тропических муссонов, две субтропические и две субполярные. В каждой климатической области и зоне существуют по четыре типа климата: материковый, океанический, климат западных и восточных побережий.

Несколько иную классификацию климатических режимов предложили советские ученые А. А. Григорьев и М. И. Будыко. Помимо режима температур и увлажнения, они учитывают радиационный баланс. Для того чтобы представить климатические условия той или иной территории, необходимо знать многие метеорологические элементы. По их величинам составляется целый ряд специальных карт.

Классификация климатов Кёппена — одна из наиболее распространённых систем классификации типовклимата.

Классификация была разработана немецким климатологом Владимиром Петровичем Кёппеном в 1900 (с некоторыми дальнейшими, сделанными им самим, изменениями в 1918 и 1936). Она основывается на концепции, в соответствии с которой наилучшим критерием типа климата является то, какие растения растут на данной территории в естественных условиях.

Вот как выглядит классификация В. Кеппена:

A.  Влажные тропические климаты (жарко-влажные): 1)   климат тропических лесов (самый холодный месяц имеет температуру +18°С, количество атмосферных осадков превышает 1500 мм в год); 2)   климат саванны (довольно продолжительный сухой сезон в зимнее время, когда средние температуры не опускаются ниже +10°С). Б. Сухие климаты: 1)   климат степей; 2)   климат пустынь. B.  Влажные умеренно-теплые климаты: 1)   средиземноморский  (теплый с сухим летом); 2)   влажный субтропический (умеренный); 3)  климат западных побережий. Г. Влажные умеренно-холодные климаты: 1)   влажный холодный; 2)   холодный (с сухой зимой). Д. Полярные климаты: 1)   климат тундры; 2)   климат ледникового покрова.

 

Крупномасштабные изменения климата Изменения климата – длительные (свыше 10 лет) направленные или ритмические изменения климатических условий на Земле в целом или в ее крупных регионах. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, в огромной степени, деятельность человека. По данным Всемирной метеорологической организации, в последние десятилетия среднегодовая температура увеличивается аномально быстро.

Проблема глобального изменения климата является одной из ключевых экологических проблем Земли. Причиной изменения климата являются динамические процессы на планете, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, в огромной степени, деятельность человека.

Неклиматические факторы и их влияние на изменение климата

1.  Последние исследования показывают, что парниковые газы являются главной причиной глобального потепления.  Согласно исследованиям, парниковый эффект, возникающий в результате нагревания атмосферы тепловой энергией, удерживаемой парниковыми газами, является ключевым процессом, регулирующим температуру Земли. Растущий уровень диоксида углерода считается главной причиной глобального потепления, начиная с 1950 года. Согласно данным Межгосударственной группы экспертов по изменению климата (МГЭИК) от 2007 года, концентрация СО2 в атмосфере в 2005 году составила 379 чнм3, в доиндустриальный период она составляла 280 чнм3. Чтобы предотвратить резкое потепление в ближайшие годы, концентрация углекислоты должна быть снижена до уровня, существовавшего до индустриальной эпохи - до 350 частей на миллион (0,035%) (сейчас - 385 частей на миллион и увеличивается на 2 миллионные доли (0,0002%) в год, в основном из-за сжигания ископаемого топлива и вырубки лесов).

2. Тектоника литосферных плит. На протяжении длительных отрезков времени тектонические движения плит перемещают континенты, формируют океаны, создают и разрушают горные хребты, т. е. создают поверхность, на которой существует климат. Недавние исследования показывают, что тектонические движения усугубили условия последнего ледникового периода: около 3 млн лет назад северо- и южноамериканская плиты столкнулись, образовав Панамский перешеек и закрыв пути для прямого смешивания вод Атлантического и Тихого океанов.

3.  Солнечное излучение. Солнце является основным источником тепла в климатической системе. Солнечная энергия, превращённая на поверхности Земли в тепло, является неотъемлемой составляющей, формирующей земной климат. Если рассматривать длительный период времени, то в этих рамках Солнце становится ярче и выделяет больше энергии, т. к. развивается согласно главной последовательности. Это медленное развитие влияет и на земную атмосферу.

4. Изменения орбиты. По своему влиянию на климат изменения земной орбиты сходны с колебаниями солнечной активности, поскольку небольшие отклонения в положении орбиты приводят к перераспределению солнечного излучения на поверхности Земли.

5. Вулканизм. Одно сильное извержение вулкана способно повлиять на климат, вызвав похолодание длительностью несколько лет. Гигантские извержения, формирующие крупнейшие магматические провинции, случаются всего несколько раз в сто миллионов лет, но они влияют на климат в течение миллионов лет и являются причиной вымирания видов.

Вулканы являются также частью геохимического цикла углерода. На протяжении многих геологических периодов диоксид углерода высвобождался из недр Земли в атмосферу, нейтрализуя тем самым количество СО2, изъятого из атмосферы и связанного осадочными породами и другими геологическими поглотителями СО2. Однако этот вклад не сравнится по величине с антропогенной эмиссией оксида углерода, которая, по оценкам Геологической службы США, в 130 раз превышает количество СО2, эмитированного вулканами.

Антропогенное воздействие на изменение климата

Антропогенные факторы включают в себя деятельность человека, которая изменяет окружающую среду и влияет на климат.

1. Сжигание топлива. Начав расти во время промышленной революции в 1850-х годах и постепенно ускоряясь, потребление человечеством топлива привело к тому, что сейчас уровень СО2 в атмосфере несоизмеримо выше, чем когда-либо за последние 750 000 лет. Вместе с увеличивающейся концентрацией метана эти изменения предвещают рост температуры на 1.4-5.6°С в промежутке между 1990 и 2100 годами.

2. Аэрозоли. Считается, что антропогенные аэрозоли, особенно сульфаты, выбрасываемые при сжигании топлива, влияют на охлаждение атмосферы.

3. Цементная промышленность. Производство цемента является интенсивным источником выбросов СО2, на него приходится приблизительно 2.5 % выбросов индустриальных процессов (энергетический и промышленный секторы).

4. Землепользование. Существенное влияние на климат оказывает землепользование. Орошение, вырубка лесов и сельское хозяйство коренным образом меняют окружающую среду. Например, на орошаемой территории изменяется водный баланс. Землепользование может изменить изменение отражательной способности поверхности Земли (альбедо) отдельно взятой территории, поскольку изменяет свойства подстилающей поверхности и тем самым количество поглощаемого солнечного излучения.

5. Скотоводство. Согласно отчету ООН скот является причиной 18% выбросов парниковых газов в мире. Это включает в себя и изменения в землепользовании, т. е. вырубку леса под пастбища. В дополнение к выбросам СО2, скотоводство является причиной выброса 65% оксида азота и 37% метана, имеющих антропогенное происхождение.

Все эти факторы губительно сказывается на жизни и здоровье очень многих представителей флоры и фауны. Звери, птицы и рыбы страдают от перенасыщения воздуха углекислым газом.  Места их обитания сокращаются из года в год.

Самыми уязвимыми на планете существами являются обитатели полярных территорий. Морской лед исчезает, а с ним уходит и привычная среда обитания жителей местности. Глобальное потепление может привести к исчезновению многих видов животных, обитающих в этой местности.

"Этот регион отличается большим биологическим разнообразием. Здесь очень много различных форм жизни, если они исчезнут, их больше нигде нельзя будет найти", - говорит биолог-маринист Дейв Барнс. Императорский пингвин — красивейшая птица. Он приспособился к арктическим холодам и ветрам. Но его пространство уменьшается. И пища, криль, исчезает. Из-за прихода слишком ранней весны (виновник – глобальное изменение климата), берлоги белых медведей, где в это время подрастают их детеныши, обваливаются. Медвежата оказываются погребенными заживо. Та же ситуация с тюленями. На местах бывшей тундровой мерзлоты начинают расти деревья. Это увеличивает среду обитания одних животных за счет других. Это "сталкивает их лбами" и заставляет яростно бороться за территории – источники пропитания. И всегда находится более слабый соперник. Например, песец. Лис больше и они сильнее этого зверя. Новый враг неотступно преследует песца в некоторых районах тундры.

Существуют прогнозы исчезновения до 30-40% видов растений и животных Земли, поскольку их среда обитания будет изменяться быстрее, чем они могут приспособиться к этим изменениям.

Всемирный фонд дикой природы (WWF) назвал десять животных, популяциям которых грозит гибель из-за глобального изменения климата на нашей планете. "По оценкам ученых, если выбросы парниковых газов останутся на прежнем уровне, к 2050 году исчезнет четверть известных нам сегодня видов животных и растений", - говорится в составленном экологами списке животных, находящихся под угрозой исчезновения.

Главным символом угрозы изменения климата экологи называют белого медведя. По их мнению, при современном темпе роста глобальной температуры на Земле к середине XXI века 42% летнего льда будет потеряно, и через 75 лет белый медведь может исчезнуть как вид. Вторыми в списке экологов значатсябенгальские тигры, обитающие в расположенном на границе между Бангладеш и Индией массиве мангровых лесов Сандарбан. Из-за ежегодного подъема уровня моря на 4 миллиметра в течение 50 лет около 70% местообитания тигров может быть потеряно. На третьем месте в списке - кораллы, более 80% которых через несколько десятков лет может исчезнуть навсегда. В 1998 году из-за обесцвечивания кораллов, вызванного изменением климатических условий, погибло 16% мировых запасов коралловых рифов. Рекордно жаркие температуры воздуха лишают рифы питательных веществ и полностью их обесцвечивают. Изменение климата в Австралии из-за сокращения осадков и увеличения температуры ставит многие виды австралийских животных на грань вымирания, в том числе кенгуру валлаби, а также коаловые, древесные и другие виды австралийских кенгуру. Еще одним видом животных, которым смертельно угрожает сокращение площади льдов в Арктике, ученые называют китов, в том числе популяции нарвалов и белух. Шестым номером в списке значатся четыре популяции пингвинов, численность которых сильно уменьшилась за последние годы. Повышение температуры приводит к таянию антарктических льдов и истощению водных биоресурсов, от которых зависит выживание пингвинов. Некоторые колонии императорского пингвина сократились в два раза за последние 50 лет, а на северо-западном побережье Антарктики пингвинов Адели стало меньше на 65% за последние 25 лет. Седьмое место занимают морские черепахи, для потомства которых опасно изменение климата - температура гнезда четко определяет пол потомков: холод производит мужское потомство, тогда как тепло способствует появлению женского. Потепление мест гнездования уменьшает количество мужского потомства, серьезно угрожая тем самым жизнеспособности популяций черепах. На двух островах Индонезии, где живут орангутаны, глобальное изменение климата приведет к росту количество осадков в сезон дождей и пожаров в сухой период. Из-за своей медлительности многие орангутаны погибают в разгул огненной стихии. За последние десять лет численность орангутанов сократилась на 30-50%, и в дальнейшем единственный вид этой обезьяны в Азии может исчезнуть в течение нескольких десятилетий. На девятом месте в списке - слоны, места обитания которых будут также сокращаться из-за более сухого и менее предсказуемого климата в Африке южнее Сахары. Замыкают список альбатросы - шесть из семи видов австралийского альбатроса наиболее уязвимы из-за того, что привязаны к одному месту гнездования. Также они зависят от температуры воды: теплая вода менее богата едой, и из-за недостатка пищи многие птицы погибают.

Прогнозирование изменений погоды и климата с помощью средств ГИС

ГИС - это современная компьютерная технология для картирования и анализа объектов реального мира, а также событий, происходящих на нашей планете, в нашей жизни и деятельности. Основными функциями ГИС являются:

геопространственный анализ специальных и общегеографических данных;

моделирование геопространства – создание моделей геопространства;

сбор и подготовка геоинформации – получение исходных данных для модели-рования;

визуализация – требуется для контроля и восприятия человеком результатов пространственного анализа.

Геоинформационные системы обладают рядом преимуществ по сравнения с обычными информационными системами, как в визуальном представлении пространственных данных, так и в проведении анализа этих самых данных.

В области визуального представления:

многослойность карт созданных с помощью ГИС означает, что однотипные пространственные объекты расположены в отдельном слое, который можно включить или отключить;

ГИС обладают способностью внесения полноценного масштабного ряда, то есть возможность создания в одной ГИС карт разного масштаба и отображение нужной из них;

существует возможность трёхмерного представления карты;

цифровую карту, созданную с помощью ГИС, можно вывести на печать и получить полноценную бумажную копию.

В области аналитики географические информационные системы также имеют не-сколько очень важных преимуществ:

автоматизированный расчет длин, площадей, буферных зон, экспозиции;

возможность вносить любое количество информации на карту;

 Применение ГИС-технологий на примере снеголавинных исследований.

Достаточно широко ГИС – технологии применяются при создании прогнозов схода снежных лавин по методу подобия образов. Швейцарские исследователи (21) составили базу данных о сходе лавин – их размерах и метеорологических условиях, сопровождающих обрушения, определили и наложили на генерированную карту лавиноопасных территорий частоту и дальность выброса лавин. Прогноз производится при сравнении текущих метеоусловий с критическими, определяемыми по базе данных. При этом прогнозируется время обрушения и размер лавин.

Канадский исследователь (23) также использует банк метеорологических данных, связанных с обрушением лавин. Метеоданные коррелируются со структурой поверхностного слоя снега. Изучение структуры производится на репрезентативных участках – полученные результаты апроксимируются на все сходные ландшафты (в данной модели выделение ландшафтов осуществляется с помощью космических снимков).

Для составления прогноза лавинной опасности сотрудники Цеха противолавинной защиты ОАО «Апатит» (7) с использованием цифровой модели распространения снежного покрова получают распределение напряжений в снежной толще на склоне.

Оригинальная методика прогноза схода снежных лавин с применением ГИС – технологий предложена для создания Национального снеголавинного бюллетеня Швейцарии (16). Топографической основой служит цифровая модель рельефа масштаба 1:25 000. Методика предусматривает поступление оперативной снежнометеорологической информации. Всем факторам лавинообразования (геоморфологическим, рассчитываемым по цифровой модели, и метеорологическим, полученным по результатам наблюдений) присваивается в зависимости от значения свой весовой коэффициент. В зависимости от направления влагонесущего потока меняется весовой коэффициент ориентации склона. По значению произведения весовых коэффициентов определяется степень лавинной опасности в соответствии с европейской шкалой лавинной опасности– каждой ступени соответствуют определенные экспертами пороговые значения произведения. Конечным продуктом являются генерируемые средствами ГИС карты толщины снежного покрова, прироста снега (за последние сутки), суммы свежевыпавшего снега за последние 3 дня, и, наконец, карты прогноза лавинной опасности на отдельные горные массивы и на всю территорию страны. Уточнение прогноза осуществляется специалистами-лавинщиками.

В ближайшей перспективе создание методик прогноза мокрых лавин. Цифровая модель рельефа и генерированные слои углов наклона и экспозиции склонов используются для расчета характеристик снеготаяния. Полученные по цифровой модели параметры склонов применяются для расчетов, к примеру, поступления солнечной радиации (12).

Наиболее популярным программным продуктом, используемым в лавиноведении является пакет ArcInfo, оснащенный мощными модулями расширения (10, 11, 12, 14, 20, 21). Ряд задач решается с применением более простых и дешевых программ, к примеруMapInfo (13) и Idrisi (15, 19). Элементы ГИС-технологий, работа с цифровой моделью рельефа используются в специализированном программном обеспечении ELSA, созданном французскими лавинщиками для моделирования и анализа лавинных очагов (18).

Снежные лавины могут быть непосредственным объектом исследования проекта ГИС. Базовой основой таких проектов служат, как правило, крупномасштабные карты. Они охватывают небольшие по площади территории: лавиноопасный склон (19), долину (21), отдельный горный хребет (10).

Отдельным слоем (блоком) лавины входят в состав комплексных ГИС, описывающих природные условия регионов и созданных для изучения самих явлений, их взаимосвязей и их влияния на процессы и явления (8). Для создания картографической основы используются карты и снимки среднего масштаба.

Цели создания ГИС – проектов, включающих лавинную тематику, сводятся к определению состояния исследуемой территории на предмет возникновения лавинной опасности. Это:

- обеспечение планирующих, проектных, контролирующих организаций сведениями о распространении природных опасностей, создание земельного кадастра, выбор оптимальных мест под строительство линейных и площадных объектов (Россия, США, Швейцария, Австрия и др.);

- экологический контроль региона – влияние лавин на динамику ландшафтов, характер и границы растительных сообществ (8);

- выбор безопасных путей передвижения туристских групп (15);

- изучение взаимосвязей опасных природных и антропогенных явлений (Россия, США).

Перспективным направлением для применения ГИС-технологий представляется долгосрочный прогноз лавинной активности в связи с глобальным изменением климата, разрабатываемый в НИЛ снежных лавин и селей МГУ (13). Решение данной задачи осуществляется в мелком масштабе. Также мелкомасштабными являются рабочие проекты «Лавины России» и «Опасные гляциально-нивальные процессы». В основу последнего положена база данных о катастрофических лавинах во всем мире.