Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АССЕМБЛЕР.doc
Скачиваний:
6
Добавлен:
21.09.2019
Размер:
388.1 Кб
Скачать

39 Особливості процесорів з архітектурою vliw

Архитектура VLIW базируется на множестве независимых функциональных устройств. Вместо того, чтобы пытаться параллельно выдавать в эти устройства независимые команды, в таких машинах несколько операций упаковываются в одну очень длинную команду. При этом ответственность за выбор параллельно выдаваемых для выполнения операций полностью ложится на компилятор, а аппаратные средства, необходимые для реализации суперскалярной обработки, просто отсутствуют.

WLIW-команда может включать, например, две целочисленные операции, две операции с плавающей точкой, две операции обращения к памяти и операцию переход

37. CISC.Архитектура набора команд служит границей между аппаратурой и программным обеспечением и представляет ту часть системы, которая видна программисту или разработчику компиляторов.

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники являются архитектуры CISC и RISC. Основоположником CISC-архитектуры можно считать компанию IBM с ее базовой архитектурой /360, ядро которой используется с1964 года и дошло до наших дней, например, в таких современных мейнфреймах как IBM ES/9000.

Лидером в разработке микропроцессоров c полным набором команд (CISC - Complete Instruction Set Computer) считается компания Intel со своей серией x86 и Pentium. Эта архитектура является практическим стандартом для рынка микрокомпьютеров. Для CISC-процессоров характерно:

- сравнительно небольшое число регистров общего назначения;

- большое количество машинных команд, некоторые из которых нагружены семантически аналогично операторам высокоуровневых языков программирования и выполняются за много тактов;

- большое количество методов адресации;

- большое количество форматов команд различной разрядности;

- преобладание двухадресного формата команд;

- наличие команд обработки типа регистр-память.

38. RISC.Основой архитектуры современных рабочих станций и серверов является архитектура компьютера с сокращенным набором команд (RISC - Reduced Instruction Set Computer). Зачатки этой архитектуры уходят своими корнями к компьютерам CDC6600, разработчики которых (Торнтон, Крэй и др.) осознали важность упрощения набора команд для построения быстрых вычислительных машин. Эту традицию упрощения архитектуры С. Крэй с успехом применил при создании широко известной серии суперкомпьютеров компании Cray Research. Однако окончательно понятие RISC в современном его понимании сформировалось на базе трех исследовательских проектов компьютеров: процессора 801 компании IBM, процессора RISC университета Беркли и процессора MIPS Стенфордского университета.

В 1980 году Д.Паттерсон со своими коллегами из Беркли начали свой проект и изготовили две машины, которые получили названия RISC-I и RISC-II. Главными идеями этих машин было отделение медленной памяти от высокоскоростных регистров и использование регистровых окон. В 1981году Дж.Хеннесси со своими коллегами опубликовал описание стенфордской машины MIPS, основным аспектом разработки которой была эффективная реализация конвейерной обработки посредством тщательного планирования компилятором его загрузки.

Эти три машины имели много общего. Все они придерживались архитектуры, отделяющей команды обработки от команд работы с памятью, и делали упор на эффективную конвейерную обработку. Система команд разрабатывалась таким образом, чтобы выполнение любой команды занимало небольшое количество машинных тактов (предпочтительно один машинный такт). Сама логика выполнения команд с целью повышения производительности ориентировалась на аппаратную, а не на микропрограммную реализацию. Чтобы упростить логику декодирования команд использовались команды фиксированной длины и фиксированного формата.

Среди других особенностей RISC-архитектур следует отметить наличие достаточно большого регистрового файла (в типовых RISC-процессорах реализуются 32 или большее число регистров по сравнению с 8 - 16 регистрами в CISC-архитектурах), что позволяет большему объему данных храниться в регистрах на процессорном кристалле большее время и упрощает работу компилятора по распределению регистров под переменные. Для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки.

Сформулируем чётко свойства:

- относительно большой регистровый файл;

- небольшое кол-во методов адресации;

- меньшее кол-во машинных команд;

  • Бол-ство команд имеет фиксированную длину и явл. трёхадресными.

36.Принципы организации основной памяти в совр.компах

Основная память представляет собой следующий уровень иерархии памяти. Основная память удовлетворяет запросы кэш-памяти и служит в качестве интерфейса ввода/вывода, поскольку является местом назначения для ввода и источником для вывода. Для оценки производительности основной памяти используются два основных параметра: задержка и полоса пропускания. Традиционно задержка основной памяти имеет отношение к кэш-памяти, а полоса пропускания или пропускная способность относится к вводу/выводу. В связи с ростом популярности кэш-памяти второго уровня и увеличением размеров блоков у такой кэш-памяти, полоса пропускания основной памяти становится важной также и для кэш-памяти. Увеличение разрядности основной памяти Кэш-память первого уровня во многих случаях имеет физическую ширину шин данных соответствующую количеству разрядов в слове, поскольку большинство компьютеров выполняют обращения именно к этой единице информации. В системах без кэш-памяти второго уровня ширина шин данных основной памяти часто соответствует ширине шин данных кэш-памяти. Удвоение или учетверение ширины шин кэш-памяти и основной памяти удваивает или учетверяет соответственно полосу пропускания системы памяти. Реализация более широких шин вызывает необходимость мультиплексирования данных между кэш-памятью и процессором, поскольку основной единицей обработки данных в процессоре все еще остается слово. Эти мультиплексоры оказываются на критическом пути поступления информации в процессор. Память с расслоением При расслоении банки памяти обычно упорядочиваются так, чтобы N последовательных адресов памяти i, i+1, i+2, ..., i+ N-1 приходились на N различных банков. В i-том банке памяти находятся только слова, адреса которых имеют вид kN + i (где 0 ( k ( M-1, а M число слов в одном банке). Можно достичь в N раз большей скорости доступа к памяти в целом, чем у отдельного ее банка, если обеспечить при каждом доступе обращение к данным в каждом из банков. Имеются разные способы реализации таких расслоенных структур. Обобщением идеи расслоения памяти является возможность реализации нескольких независимых обращений, когда несколько контроллеров памяти позволяют банкам памяти (или группам расслоенных банков памяти) работать независимо. Использование специфических свойств динамических ЗУПВ обращение к ДЗУПВ состоит из двух этапов: обращения к строке и обращения к столбцу. При этом внутри микросхемы осуществляется буферизация битов строки, прежде чем происходит обращение к столбцу С целью увеличения производительности все современные микросхемы памяти обеспечивают возможность подачи сигналов синхронизации, которые позволяют выполнять последовательные обращения к буферу без дополнительного времени обращения к строке. Имеются три способа подобной оптимизации: блочный режим (nibble mode) - ДЗУВП может обеспечить выдачу четырех последовательных ячеек для каждого сигнала RAS. страничный режим (page mode) - Буфер работает как статическое ЗУПВ; при изменении адреса столбца возможен доступ к произвольным битам в буфере до тех пор, пока не поступит новое обращение к строке или не наступит время регенерации. режим статического столбца (static column) - Очень похож на страничный режим за исключением того, что не обязательно переключать строб адреса столбца каждый раз для изменения адреса столбца. Начиная с микросхем ДЗУПВ емкостью 1 Мбит, большинство ДЗУПВ допускают любой из этих режимов, причем выбор режима осуществляется на стадии установки кристалла в корпус путем выбора соответствующих соединений. Эти операции изменили определение длительности цикла памяти для ДЗУВП.

35. Оценка производительности вычислительных систем

Основу для сравнения различных типов компьютеров между собой дают стандартные методики измерения производительности. MIPS В общем случае MIPS есть скорость операций в единицу времени, т.е. для любой данной программы MIPS есть просто отношение количества команд в программе к времени ее выполнения. MIPS зависит от набора команд процессора, что затрудняет сравнение по MIPS компьютеров, имеющих раз ные системы команд. MIPS даже на одном и том же ком пьютере меняется от програм мы к программе. MIPS может меняться по отношению к производительности в противо положенную сторону. MFLOPS Обычно для научно-технических задач производительность процессора оценивается в MFLOPS (миллионах чисел-результатов вычислений с плавающей точкой в секунду, или миллионах элементарных арифметических операций над числами с плавающей точкой, выполненных в секунду). Как единица измерения, MFLOPS, предназначена для оценки производительности только операций с плавающей точкой, и поэтому не применима вне этой ограниченной области. SPECint92, SPECfp92 Набор тестов CINT92, изме ряющий производительность процессора при обработке целых чисел, состоит из шести программ, написанных на языке Си и выбранных из различных прикладных областей: теория цепей, интерпретатор языка Лисп, разработка логических схем, упаковка текстовых файлов, электронные таблицы и компиляция программ. Набор тестов CFP92, измеряющий производительность процессора при обработке чисел с плавающей точкой, состоит из 14 программ, также выбранных из различных прикладных областей: разработка аналоговых схем, моделирование методом Монте-Карло, квантовая химия, оптика, робототехника, квантовая физика, астрофизи ка, прогноз погоды и другие научные и инженерные задачи. Две программы из этого набора написаны на языке Си, а остальные 12 - на Фортране. В пяти программах используется одинарная, а в остальных - двойная точность. SPECrate_int92, SPECrate_fp92 Составные оценки SPECint92 и SPECfp92 достаточно хорошо характеризуют производите льность процессора и системы памяти при работе в одноза дачном режиме, но они совер шенно не подходят для оценки производительности многопро цессорных и однопроцессо рных систем, работающих в многозадачном режиме. Для этого нужна оценка пропу скной способности системы или ее емкости, показывающая количество заданий, которое система может выполнить в течение заданного интервала времени. Пропускная спосо бность системы определяется прежде всего количеством , которые система может предоставить в распоряжение пользователя в каждый момент времени. Именно такую оцен ку, названную SPECrate и заменившую ранее применяв шуюся оценку SPECthruput89, SPEC предложила в качестве единицы измерения производ ительности многопроцессор ных систем. AIM Генератор тестовых пакетов представляет собой програм мную систему, которая обеспе чивает одновременное выполнение множества прог рамм. Он содержит большое число отдельных тестов, кото рые потребляют определенные ресурсы системы, и тем самым акцентируют внимание на опре деленных компонентах, из которых складывается ее общая производительность. При каждом запуске генера тора могут выполняться любые отдельные или все доступные тесты в любом порядке и при любом количестве проходов, позволяя тем самым создавать для системы практически любую необходимую рабочую нагрузку. Все это дает возмож ность тестовому пакету моде лировать любой тип смеси при постоянной смене акцентов и при обеспечении высокой степени конфигурирования.

34.Класификация компьютеров по областям применения

Класификация компьютеров по областям применения делится на: Персональные компьютеры и рабочие станцииПерсональные компьютеры . Это прежде всего – дружествен ные пользовательские интерфейсы", а также пробле мно-ориентированные среды и инструментальные средства для автоматизации разработки прикладных программ.Миникомпьютеры стали прародителями и другого направления развития сов ременных систем - 32-разря дных машин. Создание RISC-процессоров и микросхем памяти емкостью более 1 Мбит привело к окончательному оформлению настольных систем высокой производи тельности, которые сегодня известны как рабочие станции. рабочие станции - это хорошо сбалансированные системы, в которых высокое быстроде йствие сочетается с большим объемом оперативной и внеш ней памяти, высокопроизводи тельными внутренними магистралями, высококачес твенной и быстродействующей графической подсистемой и разнообразными устройствами ввода/вывода.X-терминалы представляют собой комбинацию безди сковых рабочих станций и стандартных ASCII-терми налов.Типовой X-терминал включает следующие элеме нты: Экран высокого разре шения ; Микропроцессор на базе Motorola 68xxx или AMD29000; Отдельный графический сопроцессор в дополнение к основному ; Базовые системные програм мы, ; Программное обеспе чение сервера X11; Перемен ный объем локальной памяти (от 2 до 8 Мбайт) для дисплея, сетевого интерфейса, .Порты для подключения клавиатуры и мыши.Работа X-терминалов зависит от главной системы, к которой они подключены посредством сети. СерверыПрикладные многопользова тельские коммерческие и бизнес-системы, , крупные издательские системы, сетевые приложения и системы обслу живания коммуникаций, разра ботку программного обеспе чения и обработку изображ ний все более настойчиво требуют перехода к модели вычислений "клиент-сервер" и распреде ленной обработке. В распреде енной модели "клиент-сервер" часть работы выполняет сервер, а часть пользовате льский компьютер . Существует несколько типов серверов: файл-сервер, сервер базы данных, принт-сервер, вычис лительный сервер, сервер приложений. Мейнфрейм - это синоним понятия "большая универсальная ЭВМ". Мейнфреймы и до сегодняшнего дня остаются наиболее мощными вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. Они могут включать один или несколько процессоров, каждый из которых, в свою очередь, может оснащаться векторными сопроцессорами . мейнфреймы представляют собой многопроцессорные системы, содержащие один или несколько центральных и периферийных процессоров с общей памятью, связанных между собой высокоскоро стными магистралями передачи данных. Кластерные архитектуры Двумя основными проблемами построения вычислительных систем для критически важных приложений, связанных с обработкой транзакций, управлением базами данных и обслуживанием телекоммуникаций, являются обеспечение высокой производительности и продолжительного функционирования систем. Наиболее эффективный способ достижения заданного уровня производительности - применение параллельных масштабируемых архитектур. Работа любой кластерной системы определяется двумя главными компонентами: высокоскоростным механизмом связи процессоров между собой и системным программным обеспечением, которое обеспечивает клиентам прозрачный доступ к системному сервису.