Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Безопасность жизнедеятельности в вопросах и ответах, задачах и решениях.doc
Скачиваний:
135
Добавлен:
02.05.2014
Размер:
3.48 Mб
Скачать

4.2. Защита от шума

Для защиты от многочисленных источников шума как в быту, так и на рабочих местах в настоящее время используются разнообразные методы. Рассмотрим некоторые из них.

Звукопоглощение

В замкнутом пространстве уровень шума определяется как прямой волной, идущей непосредственно от источника шума (ИШ), так и совокупностью волн, отраженных от всех поверхностей в помещении. Подобное звуковое поле называется диффузным, и его уравнение имеет следующий вид

, (4.9)

где Lp– уровень звуковой мощности, дБ;

S(r) – площадь поверхности, через которую на расстоянии r проходит звуковая энергия источника шума, м2; если r меньше наибольшего размера ИШ, то S(r) – площадь геометрически подобной поверхности, проходящей через расчетную точку; если r больше наибольшего размера ИШ, то S(r) определяется по соотношению

S(r)=r2; (4.10)

 – телесный угол, в который излучает источник, стерад.; =4– если ИШ уединенный;=2– если ИШ находится на поверхности (например, на полу),=– если ИШ находится у стены, и=/2 – если ИШ находится в углу комнаты;

Ф – фактор направленности излучения, задается в паспорте ИШ в виде диаграммы направленности излучения, в виде таблицы или математического соотношения; если значение Ф неизвестно, то принимают Ф=1;

В – постоянная помещения;

; (4.11)

. (4.12)

Здесь Si– площадь звукоотражающей поверхности, имеющей коэффициент звукопоглощенияi; значениеiзависит от вида звукопоглощающего материала и частоты f акустических колебаний.

При использовании звукопоглощения для снижения шума стараются максимально уменьшить отраженные волны. При этом второе слагаемое, стоящее в формуле (4.9) под знаком логарифма, стремится к нулю. Это достигается путем обработки возможно большей площади отражающих поверхностей материалами, имеющими коэффициент звукопоглощения близкий к 1 (акустическая обработка). Если до акустической обработки постоянная помещения была равна В1, а после нее – В2, то в расчетной точке шум уменьшился на

, дБ. (4.13)

Разделим числитель и знаменатель (4.12) на Ф/S(r) и назовем акустическим отношением величину

. (4.14)

Тогда соотношение (4.13) можно переписать в виде

, дБ, (4.15)

а (4.9) – представить в виде:

 L= Lp+10lgФ/S(r)+10lg1+М, дБ. (4.16)

Поскольку звукопоглощение – весьма дорогой метод, то на основе анализа (4.16) можно сделать вывод, что использовать его для снижения шума следует только в том случае, если М>>1, что возможно лишь в зоне отраженного звука, т.е. на значительном расстоянии от рабочих мест. Например, если исходное значение М=1, то за счет звукопоглощения шум можно уменьшить максимум на 3 дБ, а если исходное значение М=0,12, то уменьшение шума за счет звукопоглощения будет вообще незаметно! Покажем это на примере решения задачи.

Задача В помещении размером АВС=1074 м у боковой стены расположен постоянно работающий принтер размером 0,70,30,1м. Спектр уровней звуковой мощности принтера приведен в табл. 4.5.

Таблица 4.5

Спектр уровней звуковой мощности принтера

f, Гц

31,5

63

125

250

500

1000

2000

4000

8000

Lp, дБ

40

45

50

55

60

65

70

60

62

Оценить условия труда на рабочих местах, расположенных на расстоянии 1 м и 9 м. Коэффициент звукопоглощения стен =0,05 для всех частот. В помещении висят две шторы размером 33 м и постоянно работают 2 человека, площадь каждого из них 1,5 м2. Коэффициенты звукопоглощения штор и людей приведены в табл. 4.6 и 4.7 соответственно.

Таблица 4.6