Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
аппараты часть2экз.doc
Скачиваний:
0
Добавлен:
23.09.2019
Размер:
517.63 Кб
Скачать

Отключение

Отключение может происходить без выдержки времени или с выдержкой. По собственному времени отключения tс, о (промежуток от момента, когда контролируемый параметр превзошел установленное для него значение, до момента начала расхождения контактов) различают нормальные выключатели (tс, о = 0,02-1 с), выключатели с выдержкой времени (селективные) и быстродействующие выключатели (tс, о < 0,005 с).

Нормальные и селективные автоматические выключатели токоограничивающим действием не обладают. Быстродействующие выключатели, так же как предохранители, обладают токоограничивающим действием, так как отключают цепь до того, как ток в ней достигнет значения Іу.

Селективные автоматические выключатели позволяют осуществить селективную защиту сетей путём установки автоматических выключателей с разными выдержками времени: наименьшей у потребителя и ступенчато возрастающей к источнику питания.

25. Разря́дник — электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях. Первоначально разрядником называли устройство для защиты от перенапряжений, основанный на технологии искрового промежутка. Затем, с развитием технологий, для ограничения перенапряжений начали применять устройства на основе полупроводников и металл-оксидных варисторов, применительно к которым продолжают употреблять термин "разрядник".

Применение

В электрических сетях часто возникают импульсные всплески напряжения, вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания, приводящего к разрушительным последствиям.[1]Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.

[]Устройство и принцип действия

Разрядник состоит из двух электродов и дугогасительного устройства.

[]Электроды

Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

[]Дугогасительное устройство

После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА, защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

Виды разрядников

Воздушный разрядник закрытого или открытого типа (трубчатый разрядник)

Газовый разрядник

Вентильный разрядник

Магнитовентильный разрядник (РВМГ)

Ограничитель перенапряжений нелинейный (ОПН)

Разрядник длинно-искровой

Обозначение

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68. 1. Общее обозначение разрядника 2. Разрядник трубчатый 3. Разрядник вентильный и магнитовентильный 4. ОПН

26. Индукционные реле основаны на взаимодействии между индуцированным в каком-то проводнике током и переменным магнитным потоком. Поэтому они применяются только на переменном токе как реле защиты энергосистем. Как правило, это вторичные реле косвенного действия.

Существующие типы индукционных реле можно разделить на три группы: 1) реле с рамкой; 2) реле с диском; 3) реле со стаканом.

Поляризованное электромагнитное реле отличается от нейтрального наличием постоянного магнита. В нем два магнитных потока: рабочий, создаваемый обмотками, по которым протекает ток, и поляризующий, создаваемый постоянным магнитом.

Поляризованное реле состоит из стального сердечника (ярма) с двумя намагничивающими катушками, подвижного стального якоря, имеющего контакты слева и справа, двух подвижных контактов и постоянного магнита. Магнитный поток этого постоянного магнита Ф; проходит через якорь, а затем разветвляется: влево – Ф1 и вправо – Ф2 по ярму. В электромагнитном поляризованном реле имеются два независимых потока: Ф0, создаваемый магнитом, и рабочий (управляющий) поток Ф3, образованный катушкой электромагнита. Величина Ф0 остается постоянной, а Ф3 зависит от значения и направления тока в катушке, а также от величины воздушных зазоров между подвижным якорем и полюсами неподвижного сердечника. Изменением воздушных зазоров слева и справа изменяется сила тяги якоря.

Якорь этого реле может занимать три положения.

  1. Если тока в обмотках электромагнита нет, якорь находится в нейтральном, среднем положении; так как это положение неустойчиво, якорь удерживается в нем специальными пружинами. Если снять пружины, то реле преобразуется в двухпозиционное.

  2. При прохождении постоянного тока данного направления магнитный поток электромагнита Ф в одной части сердечника будет складываться с магнитным потоком постоянного магнита, а другой – вычитаться из него, поэтому якорь притягивается в ту или другую сторону и замыкает соответствующие контакты.

  3. При изменении направления тока магнитные потоки будут складываться в другой части сердечника.

Поляризованные реле обладают высокой чувствительностью, большим коэффициентом усиления и малым временем срабатывания, поэтому их применяют в схемах маломощной автоматики в тех случаях, когда требуется большая чувствительность или быстродействие.

27. Фотоэлектрические датчики используются во многих отраслях промышленности для обеспечения точного обнаружения объектов без физического контакта.

В большинстве основных форм фотоэлектрический датчик может рассматриваться как устройство типа концевого переключателя, в котором функцию механического привода или плеча рычага выполняет луч или свет. Фотоэлектрические датчики работают, обнаруживая изменения в интенсивности света, который либо отражается, либо задерживается обнаруживаемым объектом (мишенью). Изменения в интенсивности света могут быть результатом присутствия или отсутствия мишени или результатом изменения размера, формы, коэффициента отражения или цвета мишени.

Фотоэлектрический датчик может быть использован для обнаружения мишеней на расстояниях от меньших, чем 5 мм (0,2 in) до больших 250 м (820 ft). Успешное обнаружение с помощью фотоэлектрического датчика требует, чтобы обнаруживаемый объект (мишень) вызывал значительное изменение уровня интенсивности света, принимаемого датчиком, и, чтобы пользователь имел ясное понимание требований обнаружения.

Существует огромное количество фотоэлектрических датчиков, которые можно выбрать. Каждый предлагает уникальную комбинацию производительности обнаружения, выходных характеристик и монтажных средств. Многие датчики предлагают также уникальную встроенную логику и сетевые возможности.

Это введение поможет вам выбрать оптимальный фотоэлектрический датчик для каждого применения.