Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
353877.doc
Скачиваний:
45
Добавлен:
24.09.2019
Размер:
3.54 Mб
Скачать

36. Энтропия идеального газа.

Согласно опpеделению пpиpащение энтpопии pавно пpиведенной теплоте в обpатимом пpоцессе. Рассмотpим два каких-нибудь состояния идеального газа 1 и 2 (pис. 7.8). Чтобы найти пpиpащение энтpопии S2-S1, нужно соединить эти состояния каким-то обpатимым пpоцессом (не важно, каким именно). Удобно соединить эти состояния изотеpмическим и адиабатным пpоцессами, как показано на pисунке 7.8.

На адиабатном участке энтpопия не изменяется. Следовательно,

(7.50)

Для изотеpмического пpоцесса в идеальном газе Q = -A= uRT1lnV3/V1. Тогда с учетом (7.50) находим изменение энтpопии одного моля газа

(7.51)

Свяжем состояния 2 и 3 уpавнением адиабаты:

(7.52)

Тогда фоpмулу (7.51) можно пеpеписать в виде

(7.53)

Следовательно, энтpопия для одного моля газа может быть пpедставлена фоpмулой

(7.54)

Веpнемся тепеpь к пpоизвольной массе газа, содеpжащей молей. Энтpопия аддитивная величина, и поэтому она должна быть пpопоpциональна количеству газа, т.е. числу молей . Под логарифмом должен остаться объем моля газа, pавный V/n . Таким обpазом, энтpопия газа опpеделяется фоpмулой

(7.55)

Упpостим полученную фоpмулу, пpинимая во внимания, что

(7.56)

Таким обpазом, окончательно запишем

(7.57)

В некотоpых случаях фоpмулу (7.57) полезно пpедставить в виде

(7.58)

37.III начало тд. Следствия III начала тд.

III начало ТД: по мере приближения температуры к абсолютному нулю энтропия всякой равновесной системы при изотермических процессах перестает зависеть от каких-либо термодинамических параметров состояния и в пределе принимает одну и туже для всех систем постоянную величину, которую можно положить равной нулю.

или ,где - любой термодинамический параметр.

Постоянство энтропии при согласно III начала ТД означает что изотермический процесс является одновременно и изоэнтропическим, а следовательно, и адиабатическим. Таким образом, по третьему началу ТД нулевая изотерма совпадает с нулевой адиабатой.

Некоторые следствия III начала ТД:

1) Недостижимость абсолютного нуля температуры.

Из третьего начала ТД непосредственно следует недостижимость абсолютного нуля температуры. Действительно, нулевая изотерма совпадает с нулевой изоэнтропой , т.е. с граничным членом семейства . Но охлаждение осуществляется в результате адиабатического процесса, когда система производит работу за счет убыли своей внутренней энергии. Так как адиабаты не пересекаются, то состояние с не может быть достигнуто никаким адиабатическим процессом, поэтому нельзя достигнуть ни в каком конечном процессе и абсолютный нуль температуры, совпадающей с ; к нему можно лишь асимптотически приближаться.

2) Термические коэффициенты обращаются в ноль при .

Термический коэффициент расширения и термический коэффициент давления , как и вообще термодинамические величины и , характеризующие поведение системы при изменении температуры, могут быть получены дифференцированием соответствующих обобщенных сил по температуре, где - соответствующий данной обобщенной силе независимый параметр.

Используя первое начало ТД, нетрудно убедится, что , а так как энтропия перестает зависеть от параметров состояния, то, следовательно, и термические коэффициенты обращаются в ноль.

.

В частном случае если в качестве обобщенной силы выбираем и соответственно, , то при . Принимая в качестве обобщенных сил поверхностное натяжение , ЭДС гальванического элемента и т.д. из формулы получаем, что все эти величины при перестают зависеть от температуры и следовательно, температурный коэффициент поверхностного натяжения температурный коэффициент ЭДС и т.д. должны обращаться в нуль при приближении температуры к абсолютному нулю. (температурный коэффициент поляризации , намагниченности и т.д...). Эти выводы из III начала ТД подтверждаются экспериментально.

3) Вычисление энтропии и поведение теплоемкостей при .

Третье начало ТД упростило вычисление всех термодинамических функций. До установления третьего начала для вычисления энтропии необходимо было знать температурную зависимость теплоемкости и термическое уравнение состояния.

Согласно третьему началу, энтропию можно находить, зная лишь зависимость теплоемкости от температуры и не располагая термическим уравнением состояния, которое для конденсированных тел неизвестно. Действительно из выражений для теплоемкостей , по третьему началу, интегрированием получаем: ,

Важнейшая задача вычисления энтропии сводится к определению лишь температурной зависимости теплоемкости. По третьему началу энтропия при конечна, поэтому интегралы в формулах должны быть сходящимися. Это будет выполняться, если подынтегральные функции на нижнем пределе возрастают медленнее, чем :

поэтому и,следовательно теплоемкости стремятся к нулю быстрее, чем .

5) Вычисление энтропийной и химической постоянных идеальный газов.

Второе начало ТД оставляет открытым вопрос о явном виде энтропийной и химической постоянных идеального газа. Знание этих постоянных необходимо при рассмотрении равновесия в различных системах (химические реакции, испарение и др.). Третье начало может быть косвенно использовано для решения этой задачи, хотя классический идеальный газ и не удовлетворяет третьему началу.

Идея вычисления состоит в том, что рассматривается условие равновесия газа и твердого тела одного и того же вещества (равенство химических потенциалов вещества в обеих фазах), в которое входят выражения энтропии, как газа, так и твердого тела. Энтропия твердого тела определяется формулами , . Для энтропии идеального газа используется выражение . Энтропийная постоянная в уравнении связана с химической постоянной газа. Эти постоянные можно вычислить методами статистической физики.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]