Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 4. Биологич. значен. воды и ее физ. св-ва...doc
Скачиваний:
166
Добавлен:
25.09.2019
Размер:
4.42 Mб
Скачать

Величины водного потенциала в системе почва-растение-воздух

Компоненты системы

Водный потенциал, бар

Почвенный раствор

– 0,5

Корневой волосок

– 0,9

Корень (кора)

– 2,0

Стебель

– 5,0

Лист

– 15,0

Воздух

– 1000,0

Первая причина возникновения градиента водного потенциала – активное поступление солей и их активное перемещение из одной клетки в другую. Вторая – живые клетки паренхимы центрального цилиндра выделяют растворимые органические и минеральные вещества в сосуды и таким образом поддерживают градиент водного потенциала в сосудах. Поступая в сосуды ксилемы, они образуют осмотический градиент.

Химический потенциал воды, в которой находятся эти ионы ниже потенциала воды в разбавленном солевом растворе внешней среды. Поэтому вода должна перемещаться по градиенту водного потенциала в ксилему корня.

Сегодня, выдвинута гипотеза, которая имеет под собой экспериментальную основу, что в корнях есть специализированный механизм активного накачивания воды (водная помпа), работа которой не зависит от поступления ионов.

Действительно, для поступления воды в корень необходима энергия, поэтому этот процесс зависит от скорости аэробного дыхания корней – основного источника АТФ. Таким образом, одним из главных факторов, обуславливающих поступление воды, является О2. Отсюда условия, способные подавить дыхание, резко уменьшают поступление воды. В качестве примера рассмотрим следующее явление: прошел сильный дождь, в низком месте собралось много воды, а растение завядает. Почему? Избыток воды в почве вытеснил из нее воздух, поступление кислорода в корень затруднено, дыхание подавлено. Сразу же наблюдается торможение поступления воды в корневую систему. Этот пример объясняет, почему на затопленных водой почвах растения развиваются плохо и даже гибнут.

Затопление приводит не только к уменьшению количества О2, но и к увеличению концентрации СО2 в почве, который повреждает мембраны корневых волосков; наблюдается снижение поступления воды, что подтверждается торможением выделения пасоки.

Поступление воды в корень зависит и от температуры почвы. Например, на холодных болотистых почвах, несмотря на большое количество воды, растения испытывают недостаток воды, поскольку при низких температурах подавляется дыхание и нарушается снабжение корней энергией. У растений в этих условиях начинает формироваться ксероморфная структура (мелкие клетки, много устьиц и т. д.), которая характерна для сухих мест.

Состояние растений, при котором вода не может поступать, несмотря на ее большое количество в окружающей среде, получило название физиологической засухи.

Различные полютанты также могут влиять на поступление воды, в частности через подавление дыхания.

Необходимость поглощать большое количество воды даже в условиях ее лимита, например, в условиях засухи, приводит к тому, что растение формирует огромную корневую систему. В результате корни проникают в почву на большую глубину. У пшеницы длина корней достигает 90 см, у люцерны – 120 см. Если считать, что глубина пахотного горизонта составляет 20–25 см, то большая часть корневой системы размещается ниже. Размер корневой системы характеризуется не только глубиной их проникновения в почву. Большое значение имеет общая поверхность.

Вода в почве двигается очень медленно: на протяжении месяца она продиффундирует не больше, чем на 30 см. Перемещение кончика корня в почве опережает движение воды. Таким образом, не вода движется к корню, а корень к воде в процессе роста. Рост является первой и важнейшей особенностью корней как органа, поглощающего воду.

В засушливых условиях формируется корневая система в 3–4 раза большая, чем во влажных.

Разветвление и быстрый рост помогают корню двигаться к воде, но, с другой стороны, вода – необходимое условие роста. Как видно уже не на клеточном, а на организменном уровне, мы сталкиваемся с примером обратной связи, которая лежит в основе регуляторных процессов.

Как орган, поглощающий воду, корень владеет еще одним важным свойством – положительным гидротропизмом, это значит, что при недостатке воды растущие части корней выгибаются в стороны более влажных участков почвы.

Таким образом, корневая система представляет собой специализированный орган поступления воды.

Рост корней обычно опережает рост наземных органов. Это очень важная особенность, связанная с тем, что корень должен обеспечить потребности в воде формирующего растения.

Однако клетка любого органа, которая не насыщена водой, тоже может поглощать воду, как только она будет приведена с ней в соприкосновение. Поэтому и листья, особенно подвядшие, при погружении в воду довольно энергично ее всасывают; с другой стороны, несмотря на кутикулу, вода может поступать через поверхность листа. Показано, что только сухая кутикула почти непроницаема для воды; при смачивании она набухает и делается проницаемой, поэтому смоченные дождем или росой листья могут поглощать до 25 % падающей на них воды. Это имеет практическое значение при орошении растений дождеванием.

Дальний транспорт воды. Путь, который проходит вода от корневого волоска до испаряющей клетки листа, распадается на две части: различные по протяженности, строению и физиологическим признакам. Первая часть состоит из живых клеток и имеет малые размеры (миллиметры или доли миллиметра). Это два коротких участка – один – в корне, от его поверхности с корневыми волосками до сосудов, которые находятся в его центральном цилиндре; второй – в листе, от сосудов, входящих в состав проводящего пучка, и испаряющей воду в межклетники хлоренхимы. Вторая часть пути – это сосуды, трахеиды, которые представляют собой мертвые трубки. У травянистых растений их длина составляет несколько сантиметров, а у деревьев достигает нескольких метров и даже десятков метров.

Вода и минеральные элементы доставляются к каждой клетки надземной части растения благодаря восходящему току по ксилеме. Существует также нисходящий флоэмный ток растворов от листьев к корням. Направленный вниз флоэмный ток формируется в клетках мезофилла листьев, где часть воды, которая пришла с ксилемным током, с клеточных оболочек мезофилла переходит во флоэмные окончания.

Вода с клеток листа и непосредственно из сосудов ксилемы поступает во флоэму по осмотическому градиенту, возникающему из-за накопленных в клетках флоэмы сахаров и других органических соединений, образующихся в процессе фотосинтеза.

Нисходящий флоэмный ток доставляет органические вещества тканям корня, где они используются в метаболизме. В корнях окончания проводящих пучков элементов флоэмы, как и в листе, расположены вблизи элементов ксилемы, и вода вновь по осмотическому градиенту поступает в ксилему и движется вверх. Таким образом, происходит обмен воды в проводящей системе корней и листьев (как бы круговорот).

Ток воды по сосудам ксилемы приводит к тому, что при перерезании стебля какого-нибудь растения на небольшом расстоянии от почвы через некоторое время с конца сосудов начинает выделяться сок, который называют пасокой. Это явление получило название «плача растений».

Силу, которая подымает пасоку вверх по сосудам, назвали корневым давлением. Корневое давление можно измерить если надетую на перерезанный стебель трубку соединить с манометром. Величина корневого давления непостоянна. В оптимальных условиях она составляет 2–3 бара. При определенных условиях достигается равновесие между количеством выделенной пасоки и количеством поступившей воды, поэтому корневое давление, или количество выделенной пасоки, может отражать поглотительную способность корней. Таким образом, активными двигателями начального восходящего водного тока (корневого давления) являются живые клетки, которые прилегают к нижнему концу проводящей системы растений – это клетки паренхимы корней – нижний концевой двигатель водного потока.

Механизм корневого давления, как считают, основывается на действии сократительных белков, функцию которых выполняют микрофибриллы Ф-белков.

В какой-то степени доказательством активного выхода воды может служить гуттация.

Однако если бы растение постоянно не теряло воду в результате транспирации, то клетки корневых волосков быстро бы насытились водой, и ее поступление прекратилось. Поэтому, одной из причин возникновения градиента водного потенциала – испарение воды надземными органами.

Чем интенсивней клетки листьев испаряют воду, тем быстрее она будет поступать в клетки корней и быстрей транспортироваться вверх по растению. Потеря молекул воды в верхней части водного столба в результате испарения заставляет воду течь по сосудам ксилемы вверх для ликвидации потери. Это вызванное транспирацией движение воды получило название транспирационного тока. Он, в свою очередь, обуславливает поступление воды из почвы в растение то же по градиенту водного потенциала. Из-за транспирации водный потенциал в верхней части растения ниже, чем у основания.

Активными двигателями водного тока, обусловленного транспирацией, являются живые клетки, которые прилегают к верхнему концу всей проводящей системы растения – клетки паренхимы листа. Они были названы верхним концевым двигателем водного тока.

Механизм работы верхнего концевого двигателя несложный и основан на следующем. Атмосфера обычно недонасыщена водяными парами, поэтому имеет отрицательный водный потенциал. При относительной влажности воздуха 90 % он составляет 140 бар. У большинства растений водный потенциал листьев колеблется от 1 до 30 бар.

По причине большой разности водных потенциалов происходит транспирация. Уменьшение количества воды в паренхимной клетке листа вызывает снижение активности воды в ней и уменьшение водного потенциала.

Водный дефицит постепенно от клетки к клетке достигает корней, и активность воды в них снижается. В этом случае вода и поступает из почвы в корень. Таким образом, можно сделать вывод, что перемещение воды по растению, как и поступление ее в корень, главным образом, связано с градиентом водного потенциала в системе почва-растение-воздух. Этот градиент будет тем больше, чем больше воды будут терять клетки листа, т. е. чем сильней транспирация.

Работают два двигателя неодинаково. В среднем верхний концевой двигатель развивает силу в 10–15 бар и даже больше, а нижний 2–3 бара. Отсюда видно, что главная роль в водном обмене принадлежит верхнему двигателю. Однако, при отсутствие листьев у деревьев зимой и ранней весной, или после сухого периода главную роль в передвижении воды выполняет нижний двигатель. Большую роль в поднятии воды по растению нижний концевой двигатель должен иметь в условиях большей влажности воздуха, когда транспирация минимальна.

Для верхнего концевого двигателя источник энергии – солнце, это означает, что поглощаемая листом лучистая энергия используется для испарения.

Для нижнего концевого двигателя – источник энергии дыхание. Энергия молекул АТФ, синтезируемая во время дыхания клеток корня, расходуется на транспорт ионов в клетке, т. е. на создание градиента водного потенциала. Регуляторная роль корневого давления в водообмене растений схематически представлена на рис. 4.12.

Рис. 4.12. Место и регуляторная роль корневого давления в обще

м водообмене растений:

1 – корневое давление; 2 – активное нагнетание воды; 3 – транспирация; 4 – осмотическое поступление воды в клетки корня; 5 – перемещение воды под влиянием транспирации; 6 – ток ассимилятов; а – натяжение воды в сосудах ксилемы; б – содержание воды в листе; в – водоудерживающая способность листьев; г – состояние устьиц

Таким образом, верхний концевой двигатель представляет собой автоматически работающий механизм, который тем сильней присасывает воду, чем быстрей ее расходует.

Работой верхнего и нижнего концевых двигателей без труда можно объяснить поднятие воды на несколько десятков сантиметров, пусть метров. А как объяснить поднятие воды на десятки метров, а секвойя достигает высоты 140 метров? Сосуды, по которым двигается вода на большей части своего пути, представляют собой мертвые трубки. Они не могут развивать силы для поднятия воды. Ответить на этот вопрос помогает теория сцепления, которую предложил английский исследователь Г. Диксон в 1921 году. В соответствие с этой теорией в сосудах образуется непрерывные нити, проходящие от клеток паренхимы корня до клеток паренхимы листьев. Сила, которая заставляет молекулы воды идти друг за другом, была названа силой сцепления (когезия). Непрерывные водяные нити образуются за счет водородных связей. Однако, водяные нити сцеплены и со стенками сосудов (адгезия) с силой 300–350 бар. Все это позволяет нижнему и верхнему концевым двигателям поднимать воду по стволу на высоту 140 м.

После появления этой теории анатомы не раз обращали внимание исследователей на образование пузырьков воздуха, которые должны нарушать сцепление между молекулами воды в сосудах. Однако в случае временного исключения какого-нибудь сосуда вода движется по запасным путям (другим сосудам) или апопласту, а воздушные пузырьки постепенно рассасываются при участии живых клеток.

Передвижение воды из корня в лист по мертвым сосудам, оказывающим минимальное сопротивление водному току, представляет собой одну из находок природы, которая заключается в следующем. Клетки сосудов и трахеид вытянуты в длину, в них отсутствует живое содержимое, внутри они пустые, т. е. они представляют собой простые трубки. Одревесневшие вторичные клеточные оболочки достаточно крепкие на разрыв, способные выдержать большую разность давлений, возникающих при подъеме воды к вершине больших деревьев. Торцевые, а иногда и боковые стенки члеников сосудов, перфорированы; сосуды, которые состоят из соединенных концами члеников, образуют длинные трубки, по которым вода с минеральными веществами легко проходит. В трахеидах нет перфораций, и вода, чтобы попасть из одной трахеиды в другую, должна пройти через их торцевые стенки; но трахеиды очень длинные клетки, а поэтому и это строение тоже очень хорошо приспособлено для проведения воды.

Выход в процессе эволюции растений на сушу, крона которых располагается довольно далеко от земли, стал возможным благодаря образованию высокоспециализированной проводящей системы. Значение этого приспособления подчеркивается и названием самих растений – сосудистые.

Кроме разницы в механизмах действия существует полная согласованность в работе двух концевых двигателей. На действие любого фактора среды, способного подавить работу нижнего двигателя, лист отвечает активацией транспирации, и наоборот. Это биологически очень важное приспособление, хотя на первый взгляд, оно выглядит парадоксально: поступление воды ухудшается, а лист на этот неблагоприятный фактор отвечает не подавлением, а, наоборот, увеличением транспирации. Увеличение транспирации в данном случае имеет своей целью стимулировать поступление воды в корень.

Сейчас существует взгляд, что в растении имеется особая регуляторная система – гидродинамическая. Под ее контролем находятся водный режим, поддержание водного гомеостаза, а также, некоторые другие функции, в частности, фотосинтез. Гидродинамическая регуляторная система очень чувствительна. Она приходит в действие при очень маленькой потере воды листом (0,06 % от исходного количества) и предотвращает более сильное обезвоживание в дальнейшем.

Передача сигнала к листу происходит через сплошной водный поток, а восприятие – устичным и фотосинтетическим аппаратом. Рецептором сдвигов почвенных условий, тормозящих поступление воды, являются, скорее всего, мембраны эндодермальных клеток корня.

Гидродинамическая регуляторная система позволяет растению очень быстро реагировать на внешние изменения, потенциально неблагоприятные для водного гомеостаза.

Наземные растения стоят перед сложной дилеммой: с одной стороны, они должны обладать достаточно развитой поверхностью, чтобы эффективно поглощать солнечный свет и СО2, а с другой стороны, по мере увеличения поверхности увеличиваются потери воды. Эту проблему растения решают разными способами: во-первых, поступление воды увеличивается за счет роста корней и развития гипертрофированной поглотительной поверхности. Во-вторых, потеря воды становится медленнее из-за того, что мезофильные клетки отделены от окружающей среды кутикулой, содержащей воск. В-третьих, противоречие между необходимостью поглощать большее количество СО2 и одновременно уменьшать количество испаряемой воды растения решают с помощью осциляторного механизма.

238