Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
75
Добавлен:
26.09.2019
Размер:
3.31 Mб
Скачать

«Легкие сплавы»

К легким относятся сплавы на основе алюминия, магния и титана.

Из сплавов на основе алюминия получили распространение сплавы с медью, марганцем, крем­нием. Для повышения прочности, коррозионной стойкости, жаро­прочности алюминиевых сплавов используют литий, никель, ти­тан, бериллий.

Алюминиевые литейные сплавы содержат чаще всего кремний, медь и магний. Сплавы алюминия с кремнием, называют силуминами. Силумины жидкотекучи, имеют малую усадку, их состав близок к эвтектическому (марки АЛ2, АЛ9, АЛ4, см. табл. 3).

Сплавы алюминия с магнием для литья содержат 4,5—11 % Mg.

Упрочнение отливок из алюминиевых сплавов производят за­калкой и старением; внутренние напряжения в отливках из этих сплавов снимают отжигом.

Алюминиевые сплавы, обрабатываемые давлением, подразде­ляются на неупрочняемые и упрочняемые термической обработкой. Сплавы с марганцем и магнием относятся к неупрочняемым.

К упрочняемым сплавам относится дюралюмин (Д1, Д16). Основными компонентами, упрочняющими дюралюмин после термической обработки, являются медь, магний и марганец. При нагреве до температуры 500—520 °С дюралюмин из двухфазного превращается в однофазный по мере растворения в а-фазе (сложном твердом растворе магния и меди в алюминии) алюминида СuА12. При последующей закалке образуется пересыщенный твердый рас­твор а. С течением времени в таком растворе даже при комнатной температуре происходит концентрация атомов меди внутри кристал­лической решетки в определенных зонах раствора — «дисках» диа­метром около 5 нм. Такие «диски» с повышенным массовым содержа­нием меди располагаются более или менее равномерно в пределах каждого кристалла; в результате твердый раствор становится неодно­родным. Это явление называют естественным старением. Оно сопро­вождается повышением твердости и прочности дюралюмина при некотором понижении его пластичности. Старение можно ускорить путем подогрева сплава — искусственное старение. Наибольшую прочность сплава имеют в состоянии неоднородного твердого рас­твора, поэтому после закалки их подвергают выдержке при комнат­ной температуре в течение 5—7 сут или при температуре 150 °С (искусственное старение) в течение нескольких часов. При искусствен­ном старении важно ограничить его до начала образования СuА12, так как выделение этой фазы сопровождается понижением проч­ности. Дюралюмин обра­батывают давлением в горячем (440—480 °С) и в холодном состоя­ниях. Обработку в холодном состоянии рекомендуется делать до старения. Дюралюмин широко применяют в промышленности, осо­бенно, в авиационной и ракетной.

Спеченные алюминиевые порошки (САП) получают методами порошковой металлургии . САП состоит из алюминия и оксида алюминия. Оксид алюминия не растворяется в алюминии, равномерно распределен в алюминиевой матрице, тормозит движение ее дислокаций, в результате чего предотвращается ползучесть, умень­шается пластичность и повышается прочность сплавов. В различных марках САП А1203 содержится от 6 до 22 %, что определяет предел прочности от 300 до 460 МПа и относительное удлинение от 8 до 1,5 %. По жаропрочности САП превосходит все алюминиевые сплавы, его используют для изготовления деталей, работающих при темпе­ратурах до 500 °С, когда требуется также высокая прочность и кор­розионная стойкость. САП хорошо обрабатывается давлением, ре­занием и удовлетворительно сваривается.

Сплавы на основе магния. Из сплавов на основе магния получили распространение его сплавы с марганцем, алюминием и цинком. Для повышения механических свойств магниевых сплавов добавляют цирконий, церий, неодим, торий и др. Магниевые сплавы упрочняют закалкой и дисперсным твердением.

Для магниевых сплавов характерна низкая сопротивляемость коррозии, поэтому готовые изделия защищают от коррозии оксиди­рованием и последующим покрытием специальными лаками, красками, эпоксидными пленками.

Главным преимуществом их является высокая удельная прочность. Сплавы магния применяют для изготовления различных де­талей самолетов, вагонов, автомобилей, решающее значение при этом имеет малая плотность сплавов (1,75—1,8 г/см3).

Титановые сплавы. Титан стоек в агрессивных средах (серной и соляной кислотах, их солях), поэтому он используется в химическом машиностроении, электронике, ядерной и других областях техники. В авиа- и ракето­строении чистый титан не применяется из-за его невысокой жаро­прочности.

Для легирования титановых сплавов используют алюминий, олово, которые повышают температуру полиморфного превращения титана и называются α-стабилизаторами, а также марганец, хром, ванадий, железо, которые понижают температуру полиморфного превращения и являются β-стабилизаторами.

Сплавы с α-структурой термической обработкой не упрочняются; они обладают жаропрочностью и прочностью при низких темпе­ратурах.

В промышленности применяют в основном двухфазные а + β-сплавы, упрочняемые при закалке и старении.

Помимо высокой прочности и малой плотности (4,5—5, 2 г/см3), титановые сплавы обладают высокой коррозионной стойкостью в агрессивных средах; они получили широкое применение при из­готовлении деталей реактивных авиационных двигателей, обшивки сверхзвуковых самолетов, их используют в судостроении, криоген­ной технике.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]