Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экология ответы.docx
Скачиваний:
6
Добавлен:
27.09.2019
Размер:
121.26 Кб
Скачать

1)Экология – это наука о взаимоотношениях живых существ между собой и с окружающей их природой, о структуре и функционировании над организменных систем.

Термин «экология» в 1866 г. ввел немецкий эволюционист Эрнст Геккель. Э. Геккель считал, что экология должна изучать различные формы борьбы за существование. В первичном значении, экология – это наука об отношениях организмов к окружающей среде

Методы экологических исследований

При изучении над организменных систем экология использует все разнообразие методов как биологических, так и небиологических наук. Однако специфическим методом экологии является количественный анализ структуры и функционирования над организменных систем. Современная экология – это один из наиболее точных, наиболее математизированных разделов биологии.

Структура современной экологии

Экология делится на фундаментальную и прикладную. Фундаментальная экология изучает наиболее общие экологические закономерности, а прикладная – использует полученные знания для обеспечения устойчивого развития общества.

2) ЭКОЛОГИЧЕСКАЯ СУКЦЕССИЯ - процесс постепенного изменения состава, структуры и функции экосистем под влиянием внешнего или внутреннего фактора

Сукце́ссия (от лат. succesio — преемственность, наследование) — последовательная необратимая и закономерная смена одного биоценоза  другим на определённом участке среды во времени.

Теорию сукцессий изначально разрабатывали геоботаники, но затем стали широко использовать и другие экологи. Одним из первых теорию сукцессий разработал Ф. Клементс и развил В. Н. Сукачёв, а затем С. М. Разумовский.

3)12) Экосистема – это любое единство, включающее все организмы и весь комплекс физико-химических факторов и взаимодействующее с внешней средой. Экосистемы – это основные природные единицы на поверхности Земли.

Структура экосистемы

Поддержание жизнедеятельности организмов и круговорот веществ в экосистеме возможны только за счет постоянного притока высокоорганизованной энергии. Основным первичным источником энергии на Земле является солнечная энергия.

В экосистемах наблюдается постоянный поток энергии, которая переходит из одной формы в другую.

Фотосинтезирующие организмы переводят энергию солнечного света в энергию химических связей органических веществ. Эти организмы являются производителями, или продуцентами органического вещества. В большинстве случаев функции продуцентов в экосистемах выполняют растения.

Гетеротрофные организмы получают энергию при поглощении органических веществ и называются потребителями, или консументами. Существуют консументы первого порядка (растительноядные организмы, или фитофаги), второго порядка (организмы, питающиеся фитофагами, или зоофаги) и высших порядков (хищники и сверх–хищники, паразиты и сверх–паразиты). В большинстве случаев функции консументов в экосистемах выполняют животные. Организмы, которые специализируются на добывании строго определенной пищи, называются монофаги. Организмы, которые могут питаться различной пищей, называются полифаги. Для полифагов характерен широкий спектр питания, включающий основную, второстепенную и случайную пищу.

Погибшие организмы и отходы жизнедеятельности в любой форме потребляются организмами, разрушающими мертвое органическое вещество до неорганических веществ – редуцентами, или деструкторами. К редуцентам относятся различные животные (как правило, беспозвоночные), грибы, прокариоты:

– некрофаги – трупоеды;

копрофаги (копрофилы, копротрофы) – питаются экскрементами;

сапрофаги (сапрофиты, сапрофилы, сапротрофы) – питаются мертвым органическим веществом (опавшими листьями,линочными шкурками); к сапрофагам относятся:

– ксилофаги (ксилофилы, ксилотрофы) – питаются древесиной;

– кератинофаги (кератинофилы, кератинотрофы) – питаются роговым веществом;

– детритофаги – питаются полуразложившимся органическим веществом;

окончательные минерализаторы – полностью разлагают органическое вещество.

Продуценты и редуценты обеспечивают круговорот веществ в экосистеме: окисленные формы углерода и минеральных веществ превращаются в восстановленные и наоборот; происходит превращение неорганических веществ в органические, а органических – в неорганические.

 

4)7)14)

Экологические факторы — это определенные условия и элементы среды, которые оказывают специфическое воздейст­вие на организм.

Световой режим оказывает прямое влияние, в первую очередь, на растения. По отношению к освещенности выделяют следующие экологические группы растений:

гелиофиты – светолюбивые растения (растения открытых пространств, постоянно хорошо освещаемых местообитаний). Характерные адаптации: укороченные междоузлия, сильное ветвление, листья мелкие или с рассеченной пластинкой, хорошо развиты покровные и механические ткани, часто развито опушение, часто имеется восковой налет, палисадная хлоренхима многослойная, хлоропластов много, но они мелкие.

– сциофиты – тенелюбивые растения, которые плохо переносят интенсивное освещение (растения нижних ярусов тенистых лесов). Характерные адаптации: крупные тонкие листья, характерна листовая мозаика, палисадная хлоренхима однослойная, хлоропластов мало, но они крупные.

факультативные гелиофиты – теневыносливые растения (предпочитают высокую интенсивность света, но способны развиваться и при пониженной освещенности). Эти растения обладают частично признаками гелиофитов, частично – признакамисциофитов.

Температурный режим. Повышение устойчивости растений к пониженным температурам достигается изменением структуры цитоплазмы, уменьшением поверхности (например, за счет листопада, преобразованием типичных листьев в хвою). Повышение устойчивости растений к высоким температурам достигается изменением структуры цитоплазмы, уменьшением нагреваемой площади, образованием толстой корки (существуют растения–пирофиты, которые способны переносить пожары).

Животные осуществляют регуляцию температуры тела различными способами:

– биохимическая регуляция – изменение интенсивности обмена веществ и уровня теплопродукции;

– физическая терморегуляция – изменение уровня теплоотдачи;

– этологическая терморегуляция (поведенческие реакции).

В зависимости от климатических условий у близких видов животных наблюдается изменчивость размеров и пропорций тела, которые описываются эмпирическими правилами, установленными в XIX веке. Правило Бергмана – если два близких вида животных отличаются размерами, то более крупный вид обитает в более холодных условиях, а мелкий – в теплом климате. Правило Аллена – если два близких вида животных обитают в разных климатических условиях, то отношение поверхности тела к объему тела уменьшается с продвижением в высокие широты.

Водный режим.  Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций (см. гл. 1). Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги. Наконец, для многих видов растений, животных, грибов и микроорганизмов вода является непосредственной средой их обитания.

5) Биосфера (греч. bios — жизнь, sphaira — шар, сфера) — сложная наружная оболочка Земли, населенная организмами, составляющими в совокупности живое вещество планеты. Это одна из важнейших геосфер Земли, являющаяся основным ком­понентом природной среды, окружающей человека. Впервые термин «биосфера» был введен в науку геологом из Австрии Э. Зюссом в 1875 г. Он понимал под биосферой тонкую пленку жизни на земной поверхности. Роль и значение биосферы для развития жизни на нашей планете оказалась на­столько велика, что уже в первой трети XX в. возникло новое фундаментальное научное направление в естествознании —уче­ние о биосфере, основоположником которого является великий русский ученый В. И. Вернадский.

Состав и границы биосферы. Биосфера, являясь глобальной экосистемой (экосферой), как и любая экосистема, состоит из абиотической и биотиче­ской части.

Абиотическая часть представлена: 1) почвой и подстилаю­щими ее породами до глубины, где в них еще есть живые организмы, вступающие в обмен с веществом этих пород и физи­ческой средой порового пространства; 2) атмосферным возду­хом до высот, на которых возможны еще проявления жизни; 3) водной средой океанов, рек, озер и т. п.

Биотическая часть состоит из живых организмов всех так­сонов, осуществляющих важнейшую функцию биосферы, без которой не может существовать сама жизнь: биогенный ток атомов. Живые организмы осуществляют этот ток атомов бла­годаря своему дыханию, питанию и размножению, обеспечи­вая обмен веществом между всеми частями биосферы

6)?

8) Ноосфе́ра (греч. νόος — разум и σφαῖρα — шар) — сфера разума; сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития . Вернадский перечисляет признаки ноосферы, которые с нашими комментариями (в скобках) приводятся ниже.

1.                 Заселение человеком всей планеты. ( Тогда не останется территорий для биосферы).

2.                 Резкое преобразование средств связи и обмена между странами. (Реализовалось).

3.                 Усиление политических связей между всеми государствами Земли. (Почти реализовалось).

4.                 Преобладание геологической роли человека над другими геологическими процессами в биосфере.  (Еще не достигнуто).

5.                 Расширение границ биосферы и выход человека в космос. (Биосфера останется на земле, а часть её, в том числе и человек, уйдет в космос. Но нет смысла сохранять на Земле биосферу без человека, следовательно, только часть человечества выйдет в космос, а другая часть останется на Земле. Какая часть должна уйти?).

6.                 Освоение новых, мощных источников энергии. ( Если на Земле в тепло будет превращаться большая часть солнечной энергии, то это приведет к тепловой смерти биосферы [247]).

7.                 Равенство людей всех рас и религий. ( Равенство в потреблении, в правах или в возможности покинуть Землю и уйти в космос? Абсолютного равенства не может быть, т.к. не бывает равных возможностей).

8.                 Увеличение роли народных масс в решении вопросов внешней и внутренней политики. (Важнее, чтобы решения принимались компетентными учеными, руководителями).

9.                 Свобода научной мысли и научного искания от давления религиозных, философских и политических построений. ( Безусловно).

10.              Подъем благосостояния трудящихся. (До какого предела при резком росте численности населения Земли?)

10) Под живым веществом Вернадский понимал совокупность всех живых организмов, выраженную через массу, энергию или химический состав. Живое вещество составляет порядка 0.01 - 0.02 % от массы всей биосферы.. Наибольшую роль на планете играет именно живое вещество. Рассмотрим его основные свойства. 1. Высокая химическая активность благодаря биологическим катализаторам (ферментам). 2.Высокая скорость протекания реакций. 3.Высокая скорость обновления живого вещества. 4.Способность быстро занимать все свободное пространство. 5. Активность движения вопреки принципу роста энтропии. 6. Устойчивость при жизни и быстрое разложение после смерти. 7. Высокая приспособительная способность (адаптация).

13) Продуктивность экосистем

Продуктивность — это скорость производства биомассы в единицу времени, которую нельзя взве­сить, а можно только рассчитать в единицах энергии или накопле­ния органических веществ.

Различают продуктивность текущую и об­щую. Например, в некоторых конкретных условиях 1 га со­снового леса способен за период своего существования и роста образовать 200 м3 древесной массы — это его общая продук­тивность. Однако за один год этот лес создает всего лишь около 2 м3 древесины, что является текущей продуктивностью или годовым приростом.

.Первичная продуктивность экосистемы, сооб­щества или любой их части определяется как скорость, с кото­рой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или хи­мического синтеза (хемопродуцентами). Эта энергия матери­ализуется в виде органических веществ тканей продуцентов.

Принято выделять четыре последовательные ступени (или стадии) процесса производства органического вещества:

валовая первичная продуктивность — общая скорость накопления органических веществ продуцентами (скорость фотосинтеза), включая те, что были израсходованы на дыхание и секреторные функции. Растения на процессы жизнедеятельности тратят примерно 20% производимой химической энергии;

чистая первичная продуктивность — скорость накопления органических веществ за вычетом тех, что были израсходованы при дыхании и секреции за изучаемый период. Эта энергия может быть использована организмами следующих трофических уровней.

15) В истории развития экологии можно выделить три ос­новных этапа.

Первый этап — зарождение и становление экологии как науки (до 60-х гг. XIX в.). На этом этапе накапливались данные о взаимосвязи живых организмов со средой обита­ния, делались первые научные обобщения.

В этот же период Ж. Ламарк (1744—1829) и Т. Мальтус (1766—1834) впервые предупреждают человечество о возмож­ных негативных последствиях воздействия человека на природу.

Второй этап — оформление экологии в самостоятельную отрасль знаний (после 60-х гг. XIX в.). Начало этапа озна­меновалось выходом работ русских ученых К. Ф. Рулье (1814—1858), Н. А. Северцова (1827—1-885), В, В. Докучаева (1846—1903), впервые обосновавших ряд принципов и поня­тий экологии, которые не утратили своего значения и до на­стоящего времени.

Начинается третий этап (50-е гг. XX в. — до настояще­го времени) — превращение экологии в комплексную науку, включающую в себя науки об охране природной и окружаю­щей человека среды. Из строгой биологической науки эко­логия превращается в «значительный цикл знания, вобрав в себя разделы географии, геологии, химии, физики, социо­логии, теории культуры, экономики...» (Реймерс, 1994).

Основные законы экологии.

Б. Коммонер (1974) выдвинул ряд предположений, которые сегодня называются законами экологии:

  1. Все связано со всем. Это закон об экосистемах и биосфере.

  2. Все надо куда-то девать. Это закон о хозяйственной деятельности человека, отходы от которой неизбежны, и потому нужно думать и об уменьшении их количества и последующем захоронении этих отходов.

  3. За все надо платить. Это всеобщий закон рационального природопользования. Платить нужно энергией за дополнительную очистку отходов, удобрением – за повышение урожая, санаториями и лекарствами – за ухудшение здоровья человека.

  4. Природа знает лучше. Этот закон означает, что нельзя пытаться покорять природу, а нужно сотрудничать с ней, используя биологические механизмы и для очистки стоков, и для повышения урожая культурных растений. И не забывать о том, что сам человек – тоже биологический вид, что он часть природы, а не ее властелин.

16) Биотические факторы

К биотическим факторам относятся разнообразные способы взаимодействия организмов между собой. Все взаимодействия организмов можно разделить на внутривидовые и межвидовые, прямые и косвенные.

Различают множество типов парных взаимодействий:

1. Трофические – связанные с питанием и потоками энергии:

– прямые: взаимодействия «хищник–жертва», «паразит–хозяин»;

– косвенные: конкуренция; трофический симбиоз.

2. Топические – связанные с изменением условий обитания:

– прямые топические: одни организмы изменяют среду обитания для других;

– форические: перенос организмов одного вида организмами другого вида;

– фабрические: организмы (или их части) одного вида используются организмами другого вида как строительный материал.

3. Информационно-сигнальные – связанные с передачей информации:

– реципрокный альтруизм (взаимопомощь);

– мимикрия (миметизм, или подражание).

17)

19) 24)

Экологические факторы — это определенные условия и элементы среды, которые оказывают специфическое воздейст­вие на организм.

По характеру воздействия

Прямо действующие — непосредственно влияющие на организм, главным образом на обмен веществ

Косвенно действующие — влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

]По происхождению

Абиотические — факторы неживой природы:

климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы

орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

Биотические — связанные с деятельностью живых организмов:

фитогенные — влияние растений

микогенные — влияние грибов

зоогенные — влияние животных

микробиогенные — влияние микроорганизмов

Антропогенные (антропические):

физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

социальные — связанные с отношениями людей и жизнью в обществе

По расходованию

Ресурсы — элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)

Условия — не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

По направленности

Векторизованные — направленно изменяющиеся факторы: заболачивание, засоление почвы

Многолетние-циклические — с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

Осцилляторные (импульсные, флуктуационные) — колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

20)21) Круговорот азота

Главный источник азота органических соединений – газообразный азот N2 в составе атмосферы.  Молекулярный азот не усваивается живыми организмами. Переход его в доступные живым организмам соединения (фиксация) может происходить несколькими путями. Фиксация азота частично происходит в атмосфере, где при грозовых разрядах образуется оксид азота (II),  с последующим образованием  азотной кислоты и нитратов, выпадающих на поверхность Земли с атмосферными осадками.

Большинство растений получают азот из почвы в виде нитратов. Поступающие в растительную клетку нитраты восстанавливаются до нитритов, а затем до аммиака, после чего азот  включается в состав аминокислот, составляющих белки. Часть азота растениями усваивается непосредственно в виде ионов аммония из почвенного раствора.

Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрофикаторов, осуществляющих в анаэробной среде процесс, обратный нитрификации, восстанавливая нитраты до свободного азота.

Круговорот фосфора

В круговороте фосфора, в отличие от круговоротов азота, отсутствует газовая фаза. Фосфор в природе в больших количествах содержится в минералах горных пород и попадает в наземные экосистемы в процессе их разрушения. Выщелачивание фосфора осадками приводит к поступлению его в гидросферу и соответственно в водные экосистемы. Растения поглощают фосфор  в виде растворимых фосфатов из водного или почвенного раствора и включают его в состав органических соединений – нуклеиновых кислот, систем переноса энергии (АДФ, АТФ), в состав клеточных мембран. Другие организмы получают фосфор по пищевым цепям. В организмах животных фосфор входит в состав костной ткани, дентина.

Поскольку в круговороте фосфора отсутствует газовая фаза, фосфор как и другие биогенные элементы почвы, циркулирует в экосистеме лишь в том случае, если отходы жизнедеятельности откладываются в местах поглощения данного элемента. Нарушение круговорота фосфора может происходить, например, в агроэкосистемах, когда урожай вместе с извлеченными из почвы биогенами перевозится на значительные расстояния,  и они не возвращаются в почву в  местах потребления.

22)18)9) Совместное действие экологических факторов

На любой организм одновременно действует множество экологических факторов. К каждому фактору среды виды приспосабливаются относительно независимым путем. Каждый фактор неодинаково влияет на разные функции организма. При этом, оптимум для одних процессов может являться пессимумом для других.

Факторы среды, значение которых сильно отклоняется от оптимума, становятся ограничивающими, или лимитирующими факторами. Тогда при наличии оптимальных сочетаний множества факторов один лимитирующий фактор может привести к угнетению и гибели организмов.

Часто изменение одного фактора связано с изменением другого: например, сухие почвы обычно имеют щелочную реакцию, а переувлажненные – кислую. Тогда наблюдается взаимодействие факторов. Если факторы взаимодействуют между собой, то неблагоприятное действие лимитирующего фактора можно частично скомпенсировать изменением другого фактора..

ЗАКОН НЕЗАМЕНИМОСТИ ФУНДАМЕНТАЛЬНЫХ ФАКТОРОВ , закон Вильямса, закон, выявленный В. Р. Вильямсом (1949), согласно к-рому полное отсутствие в окружающей среде фундаментальных экологич. (физиологич.) факторов (света, воды, CO2, питательных веществ) не может быть заменено (компенсировано) др. факторами. ЗАКОН КОМПЕНСАЦИИ ФАКТОРОВ , эффект компенсации факторов, закон взаимозаменяемости факторов, закон Рюбеля, закон, выявленный Э. Рюбелем (1930), согласно к-рому отсутствие или недостаток нек-рых экологич. факторов может быть компенсирован каким-либо другим близким (аналогичным) фактором. Так, некоторые моллюски (Mytilus galloprovincialis) при отсутствии (или значительном дефиците) кальция могут построить свои раковины при достаточном количестве в среде стронция; недостаток света в парнике может быть компенсирован или увеличением концентрации СО2, или стимулирующим действием нек-рых биологически активных веществ (напр., гиббереллинов). Однако такая компенсация факторов, как правиле, относительна, так как фундаментальные экологич. (физиологич.) факторы (свет, вода, СО2, азот, фосфор, калий, многие микроэлементы и др.) в принципе незаменимы (закон Вильямса).

Закон Либиха - существование и выносливость организмов определяются самым слабым звеном в цепи их экологических потребностей. Согласно этому закону, величина урожая определяется содержанием в почве такого элемента питания, потребность в котором удовлетворяется в меньшей степени. По мере его увеличения урожай будет возрастать пропорционально вносимым дозам до тех пор, пока содержание другого вещества не окажется минимальным.