Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Элементы_комп_графики_лекции_вопросы.rtf
Скачиваний:
8
Добавлен:
11.11.2019
Размер:
14.46 Mб
Скачать

7. Вывод изображения. Система черезстрочной развертки.

Вывод изображения.

Минимальная частота кадров при выводе изображения составляет 25 кадров в секунду. Например, при демонстрации кинофильма демонстрируется 24 кадр/с, но так как каждый кадр показывается дважды, то эффективная скорость воспроизведения получается равной 48 кадр/с. Такое воспроизведение обеспечивает непрерывность вывода изображения; мерцания и подергивания незаметны. Для обеспечения иллюзии непрерывности при выводе изображения на электронно-лучевые трубки телевизионных приемников и мониторов используется черезстрочная развертка. Более простая в аппаратном отношении построчная развертка, к сожалению, не обеспечивает требуемую непрерывность изображения при той же скорости его регенерации. Пока рисуется изображение в верхней половине экрана, нижняя часть изображения успевает погаснуть (свечение люминофора уменьшается со временем), зрительно это проявляется в появлении полос на экране. В черезстрочной развертке строка с меньшей интенсивностью свечения маскируется двумя соседними строками с высокой интенсивностью свечения, создавая иллюзию непрерывности свечения всего изображения.

Система черезстрочной развертки.

Рассмотрим скоростной расчет на примере стандарта, принятого в телевидении США — 525 горизонтальных строк, 30 кадров в секунду, отношение ширины к высоте кадра — 4:3.

Сканирование начинается с левого верхнего угла экрана с нечетного поля (см. рис. 9.1). Каждая строка в поле сканируется или представляется слева направо. В то время, как электронный луч движется поперек экрана слева направо, он также перемещается вертикально вниз, но со много меньшей скоростью. При достижении правого края экрана луч делают невидимым и быстро возвращают к левому краю. Такой горизонтальный возврат луча обычно занимает около 17% времени, отведенного для одной сканируемой строки. Затем этот процесс повторяется со следующей нечетной строкой. Время перевода луча из нижнего правого угла в верхний левый угол занимает столько же времени, сколько необходимо для вывода 21 строки, поэтому реально из 525 строк видно 483. Нет 42 cтрок: в это время передается служебная информация.

Время вывода одной строки: t = 1/F * 1/L = 1/30 * 1/525 = 63.5 мкс, где F — число кадров, L — число строк. На перевод луча тратится 63.5 * 17% = 10.8 мкс. На отображение видимой строчки остается 63.5 - 10.8 = 52.7 мкс. Так как стороны экрана соотносятся как 4:3, то в строке умещается 644 пиксела: 483 * 4/3 = 644. Стало быть, время вывода одного пиксела: 53/644 = 82 нс. Отсюда вывод: необходимо использовать память со временем выборки менее 82 нс (например, 70 нс память SIMM), а лучше 40 нс (память DIMM). Если же мы имеем дело с разрешением 1024 * 768, то время вывода одного пиксела составляет 25 нс, и требуется еще более «скорострельная» память и более быстрый цифро-аналоговый преобразователь.

8. Мультимедиа.

Что такое мультимедиа? Мультимедиа — это комплексное представление информации — вывод данных в текстовом, графическом, видео-, аудио- и мультипликационном видах.

Текст.

Под текстом понимается любой набор символов из той или иной кодовой страницы. Текст использовался в компьютерах еще задолго до того, как появилось само слово «мультимедиа». Но и сейчас, и в будущем текст останется важным компонентом мультимедиа, так как он является простым, но чрезвычайно эффективным средством для представления и передачи информации.

Текст может быть представлен различными кодовыми страницами. Кодовая страница — это взаимно однозначное соответствие между изображением символа и его порядковым номером (кодом) в кодовой таблице.

Первоначально кодовые страницы состояли 128 символов, в число которых входили только строчные и прописные латинские символы, цифры, управляющие символы и символы псевдографики. По мере распространения персональных компьютеров стали появлятся кодовые страницы с символами национальных алфавитов (в том числе и с символами кириллицы). Разные кодовые таблицы имеют свои названия. Старейшая кодовая страница с русскими символами — KOI8-R, которая используется в операционных системах Unix. В ОС DOS использовалась кодировка cp866; в ОС Windows используется кодировка Windows-1251. Последняя из разрабатываемых кодовых страниц — Unicode (UTF-8), которая содержит 64 тыс. символов всех национальных алфавитов, математические, химические и другие знаки; Unicode в той или иной степени поддерживется многими современными операционными системами.

Графика.

По принципу представления графика далится на растровую и векторную. Изображение в растровой графике строится как набор элементарных точек, раскрашенных тем или иным цветом. Векторная графика строится по правилам векторной алгебры из точек, линий, поверхностей.

Растровая графика характеризуется следующими параметрами:

  • размер картинки (измеряется в пикселах, миллиметрах, дюймах и т. д.);

  • разрешение — количество точек на единицу (обычно дюйм);

  • количество передаваемых цветов или глубина цвета. Чем большее количество информации отводится для запоминания каждой отдельной точки, тем красочнее картинка и больше размер файла. Стандартные значения:

    • 2 цвета (1 бит на точку);

    • 16 цветов (4 бита на точку);

    • 256 цветов (8 бит на точку);

    • 16777216 цветов (24 бита на точку);

    • 4294967296 цветов (32 бита на точку);

  • формат записи (BMP, PCX, GIF, TIF, JPG, TGA и др.) — способы хранения графической информации с элементами (или без них) сжатия.

Векторную графика подразделяется на двумерную и трехмерную. Она имеет характеристики аналогичные математическим, а именно: координаты (декартовы, сферические, цилиндрические и др.), системы отсчета, размеры... Векторная графика может быть преобразована в растровую путем получения плоского изображения одной из проекций. Обратное преобразование невозможно или крайне сложно.

Видео.

Видео-изображение — это последовательность растровых картинок, сменяющихся с большой скоростью аналогично принципу, используемому в кинематографе или телевидении. С помощью специальных аппаратных средств обычные видеозаписи переводятся в компьютерный формат. Это дает возможность производить нелинейный монтаж и применять к изображениям различные компьютерные эффекты. После этого видео снова может быть выведено на пленку.

Компьютерное видео характеризуется следующими параметрами:

  • количество кадров в секунду (15, 24, 25...);

  • поток данных (килобайт/с);

  • формат файла (avi, mov...);

  • способ сжатия (Microsoft Video for Windows, MPEG, MPEG-I, MPEG-2, Moution JPEG).

Видео кодируется двумя основными способами: сжимается каждый кадр (картинка) в отдельности и составляется видео фильм либо создаются опорные кадры, а затем записываются изменения между этими опорными кадрами.

Компьютерное видео создается редакторами 3D анимации, монтажными пакетами, оцифровыванием видео-изображения.

Анимация.

Отличается от видео тем, что получается чисто компьютерным способом. Может быть записана в тех же форматах, что и видео, и выведена на видеопленку. Анимация делится на двумерную и трехмерную. Анимация создается редакторами двумерной и трехмерной графики, сканированием и оцифровыванием изображения.

Цифровой звук.

Аналоговый звуковой сигнал непрерывен по амплитуде и времени. Простейшая звуковая волна представляется обычно напряжением или током, изменяющимся во времени по синусоидальному закону. Амплитуда соответствует громкости звука, частота — высоте звука. Для представления в цифровом виде аналоговый сигнал перекодируют, запоминая параметры звука через определенные промежутки времени в структуре данных определенного размера.

Качество записи характеризуется: частотой дискретизации (Гц), размером структуры данных (бит), количеством каналов (стерео, моно, квадро), обобщающим параметром — потоком (бит/с).

Наиболее часто звук записывается в формате PCM (Pulse Code Modulation). Такие звуковые файлы еще называют WAV-файлами. Основные частоты дискретизации: 8, 11, 22, 44 кГц, основные размеры: 8, 16, 32, 64 бит. Сочетая эти параметры различным образом, можно широко варьировать как качество звука, так и размеры получаемых файлов.

Для воспроизведения цифрового звука применяют обратное преобразование в аналоговый сигнал из цифрового или синтез аналогового сигнала на основе цифровой записи. Для уменьшения размера звукового файла используют специальные форматы записи звука (DPCM, ADPCM) с дополнительной компрессией. В последнее время огромную популярность получил звук в формате MP3 (MPEG 1 Layer 3). Это схема сильного сжатия аудиоинформации с потерями качества звучания. Популярность этого формата объясняется тем, что при относительно высоком качестве звучания размер звукового фрагмента для наиболее часто используемого потока 128 килобит/с на порядок ниже исходного звукового фрагмента. Однако качество Audio-CD при записи в MP3 достигается на гораздо более высоких потоках, и лишь плохая воспроизводящая аппаратура не позволяет заметить артефактов MP3 на потоках от 128 килобит/с и ниже. Основная идея, на которой основана данная методика сжатия — отказ от кодирования тонких деталей звучания, лежащих вне пределов возможностей человеческого слуха. В общем случае объем и степень ощутимости потерь определяются, с одной стороны, потоком, а с другой — психоакyстической моделью возможностей слуха, использованной в каждом конкретном кодере.

Запись мелодий в формате MIDI

Для записи звучания инструментальных композиций используется формат MIDI, позволяющий описывать звучание того или иного инструмента с помощью нотной грамоты и заранее заданных характеристик этого инструмента. Плюсом является то, что выходной файл получается небольшим: десятки, редко — сотни килобайт. Большой недостаток в использовании этой методики заключается в том, что нигде заранее не было оговорено, как должен звучать, к примеру, орган или клавесин. Поэтому производители музыкальных плат настраивали звучание того или иного инструмента так, как считали нужным. Поэтому одна и та же MIDI-мелодия может звучать абсолютно по-разному на звуковых платах разных производителей.