Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава II 16-50.doc
Скачиваний:
11
Добавлен:
12.11.2019
Размер:
1.42 Mб
Скачать

Поперечность электромагнитных волн.

Допустим, что волны распространяются в однородном незаряженном диэлектрике. Применим к ним фундаментальные уравнения Максвелла ,

И материальные уравнения D = E , В = Н.

Пусть волна - плоская и монохроматическая. Запишем ее в комплексном виде

, (2.3.15)

где - круговая частота, k- волновой вектор, а амплитуды постоянны. Дифференцируя по времени, получаем ,т.е. операция дифференцирования в этом случае сводится к умножению на .Аналогично ,дифференцирование по координатам x,y,z сводится к умножению на Заметив это и обозначая координатные орты через получаем

и аналогично для rot E. В результате уравнения Максвелла перейдут в

(2.3.16)

Введем единичный вектор N нормали к фронту волны и скорость распространения последнего в направлении этой нормалитак называемую нормальную скорость v. Тогда (2.3.17)

И предыдущие соотношения перейдут в

(2.3.18)

отсюда видно , что векторы E, H, v в плоской электромагнитной волне взаимно перпендикулярны . Перпендикулярность векторов Е и Н к вектору v, или, что то же, к направлению распространения волны, означает, что электромагнитные волны поперечны. Т.о. проблема поперечности световых волн, с которой не могли справиться теории механического эфира , совсем не возникает в электромагнитной теории света.

Скорость электромагнитной волны

Из уравнений Максвелла можно определить и скорость электромагнитной волны v. С этой целью запишем эти уравнения в скалярной форме:

или

Отсюда после почленного перемножения и сокращения на ЕН получаем для v и показателя преломления следующие выражения:

,

Последнее соотношение называется законом Максвелла. Для немагнитных сред( ) оно переходит в .

В вакууме v=c, т.е. v совпадает с электродинамической постоянной с. Тем самым раскрывается глубокий смысл открытия В.Вебера и Кольрауша, впервые измеривших эту постоянную в 1856г.

Энергия переносимая электромагнитной волной

Электромагнитная волна представляет собой электромагнитное возмущение распространяющееся , как уже говорилось , в вакууме со скорость c , а в среде – со скоростью . С этим электромагнитным возмущением связанна энергия, плотность которой (т.е. энергия, заключенная в единице объема) выражается для электрического поля через

, а для магнитного поля через .В случае монохроматической волны и , так что энергия волны пропорциональна квадрату ее амплитуды . Это соотношение между энергией и амплитудой сохраняет свое значение и для любой другой волны.

При распространении электромагнитной волны происходит перенос энергии, подобно тому как это имеет место при распространении упругой волны. Вопрос о течении энергии в упругой волне был впервые (1874г.) рассмотрен Н.А.Умовым который доказал общую теорему о потоке энергии в любой среде . Поток энергии в упругой волне может быть вычислен через величины, характеризующие потенциальную энергию упругой деформации и кинетическую энергию движения частиц упругой среды. Плотность потока энергии выражается с помощью специального вектора (вектор Умова). Аналогичное рассмотрение плодотворно и для электромагнитных .До известной степени можно уподобить энергию электрического поля потенциальной энергии упругой деформации , а энергию магнитного поля – кинетической энергии движения частей деформированного тела . Так же как и в случае упругой деформации , передача энергии от точки к точке в электромагнитной волне связанна с тем обстоятельством , что волны электрической магнитной напряженности находятся в одной фазе. Такая волна называется бегущей. Движение энергии в бегущей упругой волне удобно изображается с помощью вектора S , который можно назвать вектором энергии и который показывает, какое количество энергии протекает в волне за 1с. через 1 метр в квадрате. Для электромагнитных волн вектор этот был введен Пойтингом (1884г.) Его уместно называть вектором Умова-Пойтинга.

Нетрудно найти выражение этого вектора для простого случая , рассмотренного нами в пункте 2.2 и выражающего распространение полоской электромагнитной волны вдоль оси x.

Умножив на Н и на Е и сложив,

получим

где есть плотность энергии . Рассматривая поток энергии S , входящий и выходящий из элементарного объема , найдем выражение для изменения плотности энергии по времени

Отсюда

(2.3.19)

что представляет собой численное выражение вектора Умова – Пойтинга для электромагнитной волны . Что касается направления вектора Умова – Пойтинга , то он перпендикулярен к плоскости , проходящей через векторы электрической м магнитной напряженности , т.е. в векторной форме запишется в общем виде

(2.3.20)

Своим направление вектор Умова – Пойтинаг определяет направление переноса энергии волны и может бать во многих случаях принят за направление светового луча. Не следует , однако , забывать , что понятие луча есть понятие геометрической оптики и не имеет вполне соответствующего образа в области волновых представлений , для которых введен вектор Умова - -Пойтинга .