Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
текст учебника 30062011 119 с.doc
Скачиваний:
55
Добавлен:
14.11.2019
Размер:
14.42 Mб
Скачать
  1. Ловушки, контролирующие залежи – скопления нефти и газа

Ловушкой называют объем пород, способный вместить нефть и/или газ вне зависимости от её формы и условий возникновения, но при наличии способности к аккумуляции и консервации нефти и газа в ней [48, с. 397]. Породы-коллекторы, как правило, деформированы и ограничены непроницаемыми породами (покрышкой) таким образом, что возникает ловушка, в которой и аккумулируются УВ-флюиды. Чтобы не происходила их утечка, контакт пористых пород-коллекторов и непроницаемой покрышки должен быть изогнут и обращен выпуклой стороной вверх (антиклинальная ловушка). Такой благоприятный для аккумуляции нефти и газа участок структуры (container) называют ловушкой (trap), а часть ловушки, содержащую нефть и газ – резервуаром (reservoir) [35]. Резервуары могут быть образованы разными породами, иметь различную форму, размеры и происхождение. С любой ловушкой всегда связана залежь нефти и/или газа. Залежь нефти и/или газа всегда «ищет» удобную для себя ловушку. Ловушка – структурная форма, которую принимает та или иная часть коллектора, благодаря чему создаются условия для формирования залежи УВ. Любой отдельно взятый резервуар неповторим в деталях, однако могут быть подмечены и общие черты сходства, характеризующие особенности резервуаров [35].

Первым существенным элементом резервуара является наличие породы-коллектора, вторым — сообщающегося порового пространства, третьим — ловушки. Сообщающиеся поры в кол­лекторе должны в совокупности удерживать и накапливать нефтяную залежь. Различаются коллекторы и ловушки (как резервуары), в которых могут скапливаться или уже скопились нефть и (или) газ. По И.О.Броду и Н.А.Ероменко, наоборот, ловушка является частью резервуара. Последний же представляет собой вместилище для флюидов, образованное коллектором, ограниченной покрышками [8, 9].

Природные резервуары - геологическое тело определенной формы, во всем объеме которого происходят циркуляция флюидов и их дифференциация с выделением скоплений нефти /газа в определенных местах – ловушках (рис. 2).

Р ис.2. Схема пластовой сводовой нефтегазовой залежи.

Главные элементы нефтегазового природного резервуара:

1- коллектор, 2-покрышка, 3- флюиды (вода-нефть-газ), 4- ловушка.

Нефтегазопоисковые работы направлены на прогноз и выявление ловушек в потенциальных коллекторах, так как ловушка соответствует месту, где нефть и газ, если только они присутствуют, формируют залежи.

Наиболее простым и распространенным способом превращения про­ницаемой глубинной формации в ловушку является образование антиклинали. Из обычных ловушек легче всего картируется антиклиналь. Тесная связь нефтегазовых залежей с антиклинальными складками была обнаружена на раннем этапе развития нефтегазовой геологии и добывающей промышленности и послужила обоснованием к развитию давно известной анти­клинальной теории залегания нефти и газа. Повсеместно велись поиски антиклиналей и куполов для постановки на них разведочного бурения, исключая почти полностью все другие виды ловушек. Антиклинальная теория играла преобладающую роль в поисках нефти.

На территории России подавляющее большинство антиклинальных ловушек, особенно простых и в верхних горизонтах чехла, выявлено и разведано. Наступила пора открытия и освоения новых нефтегазогеологических объектов, связанных с обнаружением сложных резервуаров, продуктивность которых определяется неоднородностью НГК и, прежде всего, характером распределения коллектора. В пределах НГК продуктивные пласты имеют не только некоторые общие внутренние свойства, но сходны и формами тел (пласты, линзы, различные выступы-блоки, штоки и др.), которые они образуют в геологическом разрезе. Форма тел зависит от обстановки, в которой эти породы образовались. Решающим фактором нефтегазоносности становится неоднородность распределения коллекторов, контролируемая блоковым строением и, соответственно, генетически разнотипными ловушками [5].

Предложены многочисленные классификации ловушек нефти и газа. [39]. Классификация Клаппа содержала следующие основные рубрики: 1) антиклинальные структуры; 2) синклинальные структуры; 3) гомоклинальные структуры; 4) куполовидные структуры или «купола»; 5) несогласия; 6) линзы песчаных пород; 7) трещины и пустоты независимо от их структурного положения; 8) структуры, обусловленные дизъюнктивными нарушениями [57]. Хирой подразделяет ловушки на: 1) седиментационные, 2) диагенетические, 3) деформационные [60]. Вильсон выделяет:1) закрытые коллекторы: а) закрытые локальной деформацией слоев; б) изолированные вследствие изменения пористости пород (для их формирования не требуется никакой деформации слоев, кроме региональ наклона); в) изолированные благодаря сочетанию складок и изменений пористости пород; г) изолированные благодаря сочетанию дизъюнктивных нарушений и изменений пористости пород и 2) открытые резервуары (не имеют промышленного значения) [61]. Хилд различает две группы резервуаров: 1) изолированные локальными деформациями слоёв; 2) изолированные вследствие изменения проницаемости пород [62]. Вилхелм сделал попытку учесть все факторы, принимающие участие в формировании ловушки. Основными подразделениями этой классификации являются: 1) ловушки, связанные с выпуклостью слоёв; 2) ловушки, связанные с изменениями проницаемости пород; 3) ловушки, связанные с выклиниванием коллектора; 4) соляные ловушки; 5) диапировые ловушки [63].

Приводимые классификации наглядно отражается смещение различных понятий в зарубежной нефтегазовой геологической науке, которое, к сожалению, до сих пор имеет место быть и в российской литературе.

//Вильсон, Хилд приравивают ловушки к природным резервуарам; Клапп, Вилхелм рассматривают ловушки для залежей нефти и газа наравне со структурными элементами контролирующими нефтяные и газовые месторождения//.

Ни одна из перечисленных классификаций не является полностью исчерпывающей, поскольку существует множество уникальных по своей природе ловушек, которые в совокупности не могут быть отражены даже в самой подробной классификационной схеме.

A.I. Levorsen (Geology of Petroleum, 1967.) рассматривает следующие типы ловушек: пластовые и структурные ловушки, связанные с образованием складок, сбросов, трещин. Этим типам ловушек он придает определяющее значение.

//Из всех основных элементов природного резервуара до начала бурения легче всего поддается определению наличия ловушек, связанных со структурными особенностями залегания коллекторов. Структурно-геологические исследования могут осуществляться различными методами: геологическим картированием, мелким колонковым бурением, подземным картированием и геофизческой съмкой. ….наиболее ценные сведения подтверждающие предшествующее прогнозирование, дает структурное картирование; оно становится основой прогнозирвания в тех случаях, когда ловушки контролируются деформациям, содержащих коллекторы отложений [35, с.222-223]//.

Предлагаемая схема проста и охватывает большинство типов ловушек, вмещающих промышленные запасы нефти и газа. По этой классификации все ловушки делятся на три основных типа:

1) структурные ловушки;

2) стратиграфические ловушки;

3) ловушки, представляющие собой комбинацию первых двух типов [35, c. 223].

Каждый из приведенных типов ловушек может быть дополнен параметрами, учитывающими их индивидульность. Классификации должны быть понятными и простыми – это обеспечит их универсальность и жизненность.

Структурная ловушка имеет куполовидное поднятие верхней поверхности горной породы в результате местной деформации, например, складко- или сбросообразования, либо их комплекса. Граница залежи внутри структурной ловушки определяется всецело или частично пересечением поверхности подпирающего зеркала воды с покрышкой, налегающей на деформированную породу-коллектор.

Стратиграфическая ловушка характеризуется тем, что основной фактор формирования ловушки представляет собой некоторое изменение стратиграфии или литологии, или обоих параметров в породе-коллекторе, например, изменение фаций, местное изменение пористости и проницаемости или исчезновение вверх по структуре породы-коллектора, вне зависимости от причины этого явления. Пространственная протяженность залежи в стратиграфической ловушке определяется полностью или в значительной степени каким-нибудь стратиграфическим типом, приуроченным к породе-коллектору. Залежь может покоиться на подпирающем зеркале вод, горизонтальном или наклонном, или заполнять поровое пространство породы-коллектора в отсутствии подстилающей воды.

Ловушки-комплексы (комбинированные). Между описанными крайними типами ловушек существует почти полный переход: наблюдаются ловушки, представляющие почти всевозможные комплексы структуры и стратиграфии. Ловушку, в которой явным существенным фактором является структура или стратиграфия, можно легко классифицировать как структурный или стратиграфический тип. Однако по мере приближения к промежуточной стадии все труднее становится определение относительного значения каждого из этих типов. В этой промежуточной группе ловушки, образованные структурными или стратиграфическими факторами в грубо равных пропорциях, лучше всего относить к ловушкам комбинированного типа.

Когда говорят о «ловушке», имеют обычно в виду на практике границы слагающей ее породы. Термины «структурная ловушка», «стратиграфическая ловушка», «антиклинальная ловушка» или «комплексная ловушка» применяются для объяснения условий их образования. Положение залежи в ловушке зависит от течения подпирающей воды. Там, где течение воды отсутствует, залежь заключена в наиболее приподнятой части ловушки. Если вода находится в движении, залежь может смещаться на различные расстояния по склону ловушки. Течение воды определяется по гидравлическому градиенту в данном районе. Поэтому даже при условии существования ловушки последняя может оказаться неэффективной в зависимости от характера жидкости, условий температуры и давления в настоящее время или в геологическом прошлом.

Большая часть запасов нефти и газа была встречена в ловушках, которые можно отнести целиком или частично к структурным. Наиболее важными особенностями структурных ловушек являются чрезвычайное разнообразие структурных условий, слагающих ловушки, а также протяжение структурных ловушек по вертикали через мощные отделы предполагаемых продуктивных горных пород.

Наиболее успешным методом определения местоположения ловушек является структурное картирование всех видов: картирование поверхности земли, подземное, колонковое бурение и геофизическое. Каждый из этих методов направлен к обнаружению местных высоких структурных условий в породах-коллекторах, которые могли бы оказаться ловушками с заключенными в них нефтяными или газовыми залежами. В местах, где залегают чистые, простирающиеся на большой площади, песчаные покровы, региональное падение имеет крутой угол, а там, где известны пологие пьезометрические поверхности, структурные ловушки должны обладать обычно большой структурной амплитудой, чтобы быть эффективными по нефтесодержанию. В линзовидных и изменчивых породах-коллекторах достаточна незначительная местная деформация. Оба эти условия могут осуществляться на одной и той же площади, где залегают различные породы-коллекторы [35].

Нестандартные ловушки углеводородов и дальнейшее совершенствование методов их поисков. В первой половине XX века в США неуклонно и целенаправленно стала изменяться методика нефтегазопоисковых работ: случайное бурение быстро сменилось геологической съёмкой, последняя дополнялась, а затем была вытеснена колонковым бурением и сейсморазведкой. С начала 50-х годов доминирующим методом стала «подземная геология», временами, дополняющаяся сейсморазведкой, и хотя в США сейсморазведка значительно усовершенствовалась (цифровые машины, компьютеризация, трехмерная сейсморазведка) она, в отличие от СССР, после 50-х годов так и осталась вспомогательным методом обоснования заложения поисковых скважин [23, 24].

Осталось только преодолеть инерцию, сложившейся в прошлом стратегии нефтегазопоисковых работ, в которой всегда первоочередными остаются антиклинальные объекты, вплоть до мельчайших, а главным методом поисков остаётся сейсморазведка.

Помимо классических неантиклинальных ловушек, литологически или стратиграфически ограниченных, давно уже обнаружены и другие типы нетрадиционных ловушек, в которых «антиклинальный эффект» либо отсутствует, либо подавлен другими эффектами.

В 1992 г. во ВНИГРИ были поставлены НИР, в которых поднимался вопрос о ловушках нефти и газа не только неантиклинального типа, но и вообще «о ловушках», то-есть, о тех вместилищах нефти и газа, которые никак не могут быть связаны с «традиционными и привычными» антиклиналями, а, возможно, и вообще не со структурными формами в любом их выражении. Рассматривалось влияние на формирование залежей УВ как тектонических, так и физико-химических процессов, протекающих в недрах земной коры.

В.В.Забалуев в 1997 году пытался обосновать, что не менее 15-20% не открытых общих ресурсов УВ Русской платформы сосредоточено в неантиклинальных залежах (по аналогии с другими древними платформами мира, где, причем, более половины таких залежей обнаружено с помощью несейсмических методов и случайного бурения). Эти залежи не открыты, потому что на Русской платформе, до недавнего времени их и не искали … .

В последние десятилетия, наконец-то, появились геологи, настойчиво рекомендующие поиск неантиклинальнальных залежей именно на Русской платформе.

* Е.Б.Грунис детально обосновывает различные типы неантиклинальных ловушек на востоке Русской платформы. Среди них: а) биогермы верхнего девона и нижнего карбона на бортах Камско-Кинельской системы грабенообразных прогибов; б) терригенные и карбонатные горизонты в ловушках облекания внутри турне, бобриковского и тульского горизонтов; в) ловушки, связанные с эрозионными врезами в визе и верейском горизонте (склоны Татарского свода и восточный борт Мелекесской впадины); зоны выклинивания и фациального замещения в различных горизонтах девона и нижнего карбона на склонах Татарского свода, Мелекесской впадины и Восточно-Оренбургского поднятия [17].

* В.В.Забалуев, ссылаясь на разрозненные первоисточники, определяет возможные неантиклинальные объекты Русской платформы: руковообразные залежи в девонских и нижнекаменноугольных отложениях Башкирского свода, в Кыновском своде - кыновском и уфимском горизонтах Татарского свода и другие (Афанасьев и др., 1987, Ларин и др., 1993; Антонов и др., 1998; Шилин, 1998) [24].

* Е.А.Леонова обосновала существование зон выклинивания коллекторов в девонских отложениях Оренбургской области и в качестве первоочередных объектов предлагает их поиски на севере и западе области [36].

* И.А.Денкевич с соавторами также считает первоочередным поиск неантиклинальных ловушек (и залежей УВ) в девонских отложениях Соль-Илецкого свода [20].

* А.Г.Шашель в своей кандидатской диссертации подчеркивает, что прекращение заметных открытий и исчерпание фонда наиболее перспективных структурных ловушек в Самарской области делает неизбежным переход к поискам сложно построенных тектонически и литологически экранированных ловушек. И хотя автор отдает предпочтение поиску тектонически ограниченных объектов на бортах девонских грабенообразных прогибов, объектами второй очереди все же названы зоны регионального выклиниванивания и фациального замещения в терригенных девонских и нижнекаменноугольных отложениях [56].

* В.Б.Арчегов (1993-2002) подчеркивал, что на границе разделов разных блоков земной коры, то есть в межблоковых зонах – структурах особого строения и особой проницаемости и продуктивности полезных ископаемых, в данном случае нефтегазопродуктивности, возможно обнаружение ловушек совершенно нового типа, накопление УВ в которых происходило в новейший этап тектонического развития (преимущественно в антропогене) при взаимном (комплексном) участии тектонических, литологических, геохимичеких и гидрогеологических показателей нефтегазоносносности - над которыми давлели и давлеют физико-химические процессы, протекающие в определенных «давление – температура» условиях нефтегазоносных комплексах [2, 4, 5 и др.].

* А.А.Отмас подчеркивает особенности блоковой делимости территории и акватории Балтийской НГО и связанную с этим методику поиска новых ловушек, контролирующих залежи нефти [42].

Необходим дальнейший поиск новых ти­пов ЗНГН и в их пределах новых типов ловушек на основе комплексного изучения блокового строения ОПБ [3, 5].

А.А.Граусман (1997) обратил внимание на нестандартные условия формирования УВ-залежей, в частности, на резко различные условия формирования УВ-залежей на территориях распространения многолетнемерзлых пород, разделив таковые на «морозные» и «мерзлые». «Морозные» породы – породы с высокой минерализацией подземных вод, остающиеся, несмотря на отрицательные температуры, в жидком состоянии; общее охлаждение недр в хорошо изолированных горизонтах (в частности, в подсолевых вендских отложениях Непско-Ботуобинской антеклизы) из-за сжатия флюидов приводит к формированию АНПД, дегазации нефти, перетокам флюидов из горизонта в горизонт, в том числе, и сверху вниз. «Мерзлые» породы – с низкой минерализацией подземных вод – образуют монолитную мерзлую плиту, всем своим весом давящую на нижележащие не мерзлые и потому пластичные породы. Возникающее таким образом добавочное геостатическое давление в верхах осадочного чехла (мезозой Алдано-Вилюйского прогиба – В.Б.Арчегов, 1988) создает выжимающий, «криогенный» напор на нижележащие толщи: в высокопроницаемых породах (мел и юра), где подземные воды легко отжимаются по латерали, возникают АНПД, а в пластах с затрудненным водообменном (низы триаса и перми – АВПД). Предложенная А.А.Граусманом схема удовлетворительно укладывается в соответствующих отложениях Западной Якутии [23].

Л.Д.Дучков с соавторами (1997) создали «Геотермический Атлас Сибири». Тепловой поток, измеряемый в мвт/м2, позволяет выявлять некоторые особенности геологического строения региона и производить районирование, косвенно влияющее на нефтегазоносность. Так, например, в Прибайкалье отчетливо видны Жигаловская аномалия северо-восточного простирания (более 50 мвт/ м2 на фоне 30-40 мвт/м2; напомним, что к ней приурочено уникальное по реальным запасам Ковыктинское газоконденсатно-гелиевое месторождение). Также отчетливо выделяется поперечная к простиранию Непско-Ботуобинской антеклизы тепловая аномалия, совпадающая с поясом разрывов, к которым приурочены Талаканское и Верхнечонское НГКМ. И, в частности, с Байкальским рифтом совпадает высококонтрастная тепловая аномалия (более 200 мвт/м2). На карте температур на глубине 5 км Жигаловской аномалии соответствует температура 1000С, а Байкальскому рифту – 2000С. Тепловая съемка позволяет также определять толщину зоны отрицательных температур; в частности, в Тунгусской синеклизе она достигает 200 м, тогда как на Анабарской антеклизе и в Приверхоянской краевой системе толщина «мерзлых» и «морозных» пород колеблется от 600 до 1400 м.

Ю.Я.Большаков с соавторами (1998) пропагандирует нетрадиционное объяснение планового несоответствия залежей нефти и газа с антиклинальными структурами на севере Западной Сибири в юрских и нижнемеловых отложениях. На таких гигантах-месторождениях как Уренгой, Ямбург, Новый порт и других «смещение залежей относительно сводов антиклиналей настолько значительно, что разность отметок ГВК или ВНК достигает сотен метров» (Большаков и др., 1998). Авторы объясняют это капиллярным экранированием залежей по латерали; в гидрофильной поровой среде капиллярное давление препятствует заполнению УВ мелкопористых разностей пород; напротив, в гидрофобных коллекторах УВ оттесняются в мелкопоровые полости, а пластовая вода занимает крупнопоровые емкости [6]. Приводимые авторами соответствующие расчеты, в частности, по Южному нефтяному месторождению, удовлетворительно объясняют наблюдаемое распределение газа, нефти, воды.

Прямое гидродинамическое экранирование далеко не редкость в нефтегазовой геологии. Ярчайшим примером является гигантское газовое месторождение Бланко-Месаверде (начальные запасы – более 425 млрд. м3) во впадине Сан-Хуан (Скалистые Горы, США). Оно приурочено к наиболее погруженной части впадины, где меловые песчаники до глубины около 2000 м газонасыщены и экранируются, видимо, напором подземных вод, поступающих во впадину из окружающих ее горных сооружений; при этом, само газовое скопление располагается гипсометрически выше абсолютной нулевой отметки (!) [35, 62].

Сходная картина наблюдается и в осевой части Западно-Канадского краевого прогиба – здесь на протяжении сотен километров наблюдается на относительно небольших глубинах (сотни метров) в меловых отложениях повсеместная, газонасыщенность песчаников, удерживающаяся также гидродинамическими силами. Оценка ресурсов газа этой синклинальной зоны достигает первых триллионов кубометров.

Не исключено существование подобных залежей и в недрах Вилюйской синеклизы и Предверхоянского прогиба, иначе говоря, Алдано-Вилюйского прогиба Приверхоянской краевой системы. Надежными признаками нефтегазоносности могут оказаться УВ-гидраты в донных осадков морей. Они обнаруживаются даже в тропических морях (Bagirov, Lercha, 1997) [64].

Так, в донных осадках Мексиканского залива гидраты обнаружены на глубине моря 2200 м; установлено, что добавка этана к метану снижает необходимое давление и повышает температуру гидратообразования – например, 10% этана стабилизирует гидрат на глубине 60 м при температуре 60С, тогда как чистый метан требует глубины более 400 м [35, 62].

При изменении давлений и температур, в частности, из-за подводных оползней (турбидиты), гидраты разрушаются, выделяя огромную энергию (возникающая температура – 5700С) и могут образовывать грязевые диапиры. Они-то и являются надежным признаком гидрато- и газоносности донных и поддонных осадков; учет и выявление таких диапиров помогает также избежать всевозможных осложнений при бурении скважин (особенно нефтяного профиля) [23, 35, 62].

Залежь нефти и/или газа – естественное локальное единичное скопление УВ в проницаемых пористых или трещиноватых породах-коллекторах ловушек различного типа. Почти всегда залежь нефти и/или газа находится под напором краевой или подошвенной воды. Главное условие для сохранности залежи нефти и/или газа – наличие покрышки, то есть такого литологического тела (пласта, пачки, толщи), которое непосредственно препятствует фильтрации флюидов (газа, нефти, воды) из породы-коллектора и является флюидоупором. Качество покрышек зависит от трещинной проницаемости.