Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эксперементальные методы Оригинал.docx
Скачиваний:
1
Добавлен:
22.11.2019
Размер:
642.66 Кб
Скачать

1.2 Химические свойства меди.

По химическим свойствам Медь занимает промежуточное положение между элементами первой триады VIII группы и щелочными элементами I группы системы Менделеева. Медь, как и Fe, Co, Ni, склонна к комплексообразованию, дает окрашенные соединения, нерастворимые сульфиды и т. д. Сходство с щелочными металлами незначительно. Так, Медь образует ряд одновалентных соединений, однако для нее более характерно 2-валентное состояние. Соли одновалентной Медь в воде практически нерастворимы и легко окисляются до соединений 2-валентной Меди; соли 2-валентной Меди, напротив, хорошо растворимы в воде и в разбавленных растворах полностью диссоциированы. Гидратированные ионы Cu2+ окрашены в голубой цвет. Известны также соединения, в которых Медь 3-валентна. Так, действием пероксида натрия на раствор куприта натрия Na2CuO2 получен оксид Сu2О3 - красный порошок, начинающий отдавать кислород уже при 100 °С. Сu2О3 - сильный окислитель (например, выделяет хлор из соляной кислоты).

Химическая активность Меди невелика. Компактный металл при температурах ниже 185 °С с сухим воздухом и кислородом не взаимодействует. В присутствии влаги и СО2 на поверхности Меди образуется зеленая пленка основного карбоната. При нагревании Меди на воздухе идет поверхностное окисление; ниже 375 °С образуется СuО, а в интервале 375-1100 °С при неполном окислении Медь - двухслойная окалина, в поверхностном слое которой находится СuО, а во внутреннем - Сu2О. Влажный хлор взаимодействует с Медью уже при обычной температуре, образуя хлорид СuCl2, хорошо растворимый в воде. Медь легко соединяется и с других галогенами. Особое сродство проявляет Медь к сере и селену; так, она горит в парах серы. С водородом, азотом и углеродом Медь не реагирует даже при высоких температурах. Растворимость водорода в твердой Медь незначительна и при 400 °С составляет 0,06 мг в 100 г Меди. Водород и других горючие газы (СО, СН4), действуя при высокой температуре на слитки Меди, содержащие Сu2О, восстановляют ее до металла с образованием СО2 и водяного пара. Эти продукты, будучи нерастворимыми в Меди, выделяются из нее, вызывая появление трещин, что резко ухудшает механические свойства меди.

При пропускании NН3 над раскаленной медью образуется Cu3N. Уже при температуре каления медь подвергается воздействию оксидов азота, а именно NO, N2O (с образованием Сu2О) и NO2 (с образованием СuО). Карбиды Сu2С2 и СuС2 могут быть получены действием ацетилена на аммиачные растворы солей Меди. Нормальный электродный потенциал Меди для реакции Сu2+ + 2е -> Сu равен +0,337 в, а для реакции Сu+ + е ->Сu равен +0,52 в. Поэтому Медь вытесняется из своих солей более электроотрицательными элементами (в промышленности используется железо) и не растворяется в кислотах-неокислителях. В азотной кислоте Медь растворяется с образованием Cu(NO3)2 и оксидов азота, в горячей концентрированной H2SO4 -с образованием CuSO4 и SO2, в нагретой разбавленной H2SO4 - при продувании через раствор воздуха. Все соли Меди ядовиты.

Медь в двух- и одновалентном состоянии образует многочисленные весьма устойчивые комплексные соединения. Примеры комплексных соединений одновалентной Меди: (NH4)2CuBr3; K3Cu(CN)4- комплексы типа двойных солей; [Cu{SC(NH2)}2]Cl и другие. Примеры комплексных соединений 2-валентной Меди: CsCuCl3, K2CuCl4 - тип двойных солей. Важное промышленное значение имеют аммиачные комплексные соединения Меди: [Сu (NH3)4] SO4, [Сu (NH3)2] SO4.

Таблица 1 Химический состав меди, % (гост 859Д78)

Примечания: 1. Содержание отдельных примесей, не указанных в таблице, в меди марок МВЧк, М00к и М00б, а также содержание газов в меди марки М00б устанавливается по соглашению изготовителя и потребителя. 2. Массовая доля серебра в меди марок М0к, М1к, М0б, М1у и Ml не должна превышать 0,003 %, а в меди марки М0ку Д0,002 %. По требованию потребителя медь марок М0б, М1у и M1 изготовляют с массовой долей серебра не более 0,0025 %. 3. В марках меди предназначенных для электротехнических целей, определяют только содержание меди и электрическое сопротивление (электропроводность), Для полуфабрикатов из меди марок М0б, М1б и M1 электрическое сопротивление отожженной проволоки при температуре 20 0С не должно превышать 0,01724 Ом*мм2/м или электропроводность должна быть не менее 58 м/Ом*мм2; для полуфабрикатов из меди марок М1р и M1, предназначенных для отдельных видов продукции, в которых допускается повышенное электросопротивление, удельное электрическое сопротивление не должно превышать 0,01754 Ом*мм2/м или электропроводность должна быть не менее 57 м/Ом*мм2; для полуфабрикатов из меди марок М006 и М1у удельное электрическое сопротивление не должно превышать 0,01706 Ом*мм2/м или электропроводность должна быть ие менее 58,6 м/Ом*мм2. Медь марок Ml и М1р, предназначенная для электротехнических целей, дополнительно обозначается буквой Е. В марках меди, предназначенных для длительного хранения, определяют все примеси, указанные в таблице. 4. По соглашению сторон допускается изготовление меди М0б с массовой долей кислорода не более 0,002%, содержание же кислорода в меди марок M1 и М1у Д по ГОСТ 193Д67 и 5.1073Д71. 5. По требованию заводов по обработке цветных металлов и электротехнической промышленности медь марки М0к изготовляют с содержанием серы не более 0,003 %. Для электротехнической промышленности в меди марки М1у массовая доля серы не должна превышать 0,003 %, а в меди марки М0б для эмальпроводовДне выше 0,002 %. 6. Знак «тире» в таблице означает, что данная примесь не нормируется.

Медь(I). Комплексы меди(I) обычно имеют (в зависимости от природы лиганда) линейное или тетраэдрическое строение. Ионы меди(I) содержат десять 3d-электронов и обычно образуют четырех координированные тетраэдрические структуры типа [CuCl4]3-. Однако с сильноосновными высокополяризованными или легко поляризующимися лигандами медь(I) образует двухкоординированные линейные комплексы.

В соединениях меди(I) ион имеет конфигурацию 3d'°, поэтому они диамагнитны и бесцветны. Исключение составляют случаи, когда окраска обусловлена анионом или поглощением в связи с переносом заряда. Относительная устойчивость ионов Сu+ и Сu2+ определяется природой анионов или других лигандов. Примерами устойчивого в воде соединения меди(I) являются малорастворимые CuCl и CuCN, соли Cu2SO4 и других оксоанионов можно получить в неводной среде. В воде они быстро разлагаются, образуя медь металлическую и соли меди(I). Неустойчивость солей меди(I) в воде обусловлена отчасти повышенными значениями энергии решетки и энергии сольватации для иона меди(П), вследствие чего соединения меди(I) неустойчивы.

Оксид меди(I) Сu2О красного цвета, незначительно растворяется в воде. При взаимодействии сильных щелочей с солями меди(I) выпадает желтый осадок, переходящий при нагревании в осадок красного цвета, по-видимому, Cu2O. Гидроксид меди(I) обладает слабыми основными свойствами, он несколько растворим в концентрированных растворах щелочей.

Медь(II). Двухзарядный положительный ион меди является ее наиболее распространенным состоянием. Большинство соединений меди(I) очень легко окисляется в соединения двухвалентной меди, но дальнейшее окисление до меди(Ш) затруднено.

Конфигурация 3d9 делает ион меди(II) легко деформирующимся, благодаря чему он образует прочные связи с серосодержащими реагентами (ДДТК, этилксантогенатом, рубеановодородной кислотой, дитизоном). Основным координационным полиэдром для двухвалентной меди является симметрично удлиненная квадратная бипирамида. Тетраэдрическая координация для меди(П) встречается довольно редко и в соединениях с тиолами, по-видимому, не реализуется.

Большинство комплексов меди(II) имеет октаэдрическую структуру, в которой четыре координационных места заняты лигандами, расположенными к металлу ближе, чем два других лиганда, находящихся выше и ниже металла. Устойчивые комплексы меди(II) характеризуются, как правило, плоскоквадратной или октаэдрической конфи­гурацией. В предельных случаях деформации октаэдрическая конфигурация превращается в плоскоквадратную. Большое аналитическое применение имеют внешнесферные комплексы меди.

СuО встречается в природе и может быть получен при накаливании металлической меди на воздухе, хорошо растворяется в кислотах, образуя соответствующие соли.

Гидроксид меди(II) Сu(ОН)2 в виде объемистого осадка голубого цвета может быть получен при действии избытка водного раствора щелочи на растворы солей меди(II). ПР(Сu(ОН)-) = 1,31.10-20. В воде этот осадок малорастворим, а при нагревании переходит в СuО, отщепляя молекулу воды. Гидроксид меди(II) обладает слабо выраженными амфотерными свойствами и легко растворяется в водном растворе аммиака с образованием осадка темно-синего цвета. Осаждение гидроксида меди происходит при рН 5,5.

Медь(III). Доказано, что медь(III) с конфигурацией 3d8 может существовать в кристаллических соединениях и в комплексах, образуя анионы — купраты. Купраты некоторых щелочных и щелочноземельных металлов можно получить, например, нагреванием смеси оксидов в атмосфере кислорода. КСuО2 — это диамагнитное соединение голубовато-стального цвета.

При действии фтора на смесь КСl и СuСl2 образуются светло-зеленые кристаллы парамагнитного соединения К3СuF6.

При окислении щелочных растворов меди(II), содержащих периодаты или теллураты, гипохлоритом или другими окислителями образуются диамагнитные комплексные соли состава K7[Cu(IO6)2].7H2O. Эти соли являются сильными окислителями и при подкислении выделяют кислород.

Соединения меди(Ш). При действии спиртового раствора щелочи и пероксида водорода на охлажденный до 50° спиртовой раствор хлорида меди(II) выпадает коричнево-черный осадок пероксида меди СuО2. Это соединение в гидратированной форме можно получить при действии пероксида водорода на раствор соли сульфата меди, содержащего в небольших количествах Na2CO3. Суспензия Сu(ОН)2 в растворе КОН взаимодействует с хлором, образуя осадок Сu2О3 красного цвета, частично переходящий в раствор.

2 Факторы, влияющие на изменение отклонения формы, расположения, качества поверхности и внутреннего содержания исследуемого образца

(температурная погрешность, влияние магнитных и эл полей, упругая и пластическая деформация и тд)

3 Основные характеристики исследуемого образца

4 Исследование поверхности образца

5 Разработка структурной схемы измерения одного или нескольких параметров исследуемого образца

6 Определение основных составляющих погрешностей при исследовании образца

Список литературы

(С 2007 книги)