Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_MO.doc
Скачиваний:
19
Добавлен:
17.04.2019
Размер:
527.87 Кб
Скачать

51.Глобальный (абсолютный) и локальный экстремум функции

Т . Любой локальный максимум (минимум) задачи выпуклого программирования является глобальным максимумом (минимумом).

52.Условный экстремум функции

53. Метод неопределенных множителей Лагранжа.

Функцией Лагранжа задачи выпуклого программирования (3.3) — (3.5) называется функция

Метод множителей Лагранжа имеет ограниченное применение, т. к. система , как правило, имеет несколько решений. Нелинейное программирование как новая математическая дисциплина возникла главным образом в связи с указанной ограниченностью метода множителей Лагранжа.

Таким образом, определение экстремальных точек задачи методом множителей Лагранжа включает следующие этапы:

1. Составление функции Лагранжа.

2. Нахождение частных производных от функции Лагранжа по переменным xj и i и приравнивание их к нулю.

3. Решая систему уравнений находят точки, в которых целевая функция задачи может иметь экстремум.

4. Среди точек, подозрительных на экстремум, находят такие, в которых достигается экстремум, и вычисляют значение функции в этих точках.

54. Определение выпуклой и вогнутой функции

А=1А1+2А2, (2.44)

10,20, 1+2=1. (2.45)

Точка А, для которой выполняются условия (2.44) и (2.45), называется выпуклой линейной комбинацией точек А1 и А2. Множество называется выпуклым, если вместе с любыми двумя своими точками оно содержит и их произвольную выпуклую линейную комбинацию. Геометрический смысл этого определения состоит в том, что множеству вместе с его двумя произвольными точками полностью принадлежит и прямолинейный отрезок, их соединяющий.

55. Общая постановка задачи выпуклого программирования. Теорема о существовании решения задачи вп (формулировка)

Рассмотрим задачу нелинейного программирования:

f (x1, x2, ..., xn)max, (3.3)

gi (x1, x2, ..., xn)bi (i=1, ..., m), (3.4)

xi0 (j=1, ..., n), (3.5)

где f и gi — некоторые функции n переменных x1, x2, ..., xn.

Для решения сформулированной задачи в такой общей постановке не существует универсальных методов. Однако для отдельных классов задач, в которых сделаны дополнительные ограничения относительно свойств функций f и gi, разработаны эффективные методы их решения. В частности, ряд таких методов имеется для решения ЗНЛП (3.3) — (3.5) при условии, что f — вогнутая (выпуклая) функция и ОДР, определяемая ограничениями (3.4) — (3.5), — выпуклая.

Функция f(x1, x2, ..., xn), заданная на выпуклом множестве X, называется выпуклой, если для любых двух точек X1 и X2 из X и любого 01 выполняется соотношение

Функция f(x1, x2, ..., xn), заданная на выпуклом множестве X, называется вогнутой, если для любых двух точек X1, X2 из X и любого 01 выполняется соотношение

Если f (X) — выпуклая функция, то –f (X) — вогнутая функция, и наоборот.

Сумма выпуклых (вогнутых) функций есть выпуклая (вогнутая) функция. Задача (3.3) — (3.5) является задачей выпуклого программирования, если функция f(x1, x2, ..., xn) является вогнутой (выпуклой), а функции gi (X) (i=1, ..., m) — выпуклыми.

Т е о р е м а. Любой локальный максимум (минимум) задачи выпуклого программирования является глобальным максимумом (минимумом).

Говорят, что множество допустимых решений задачи (3.3) — (3.5) удовлетворяет условию регулярности, если существует по крайней мере одна точка Xi, принадлежащая ОДР такая, что gi (Xi)<bi (i=1,..., m).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]