Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Первый вопрос конечное.docx
Скачиваний:
32
Добавлен:
15.02.2015
Размер:
734.2 Кб
Скачать

Связь между потенциалом и напряженностью электростатического поля. Эквипотенциальные поверхности.

Как ранее показано, работа сил электростатического поля при перемещении за­ряда q0 может быть записана с одной стороны, как , с другой же - как убыль потенциальной энергии, т.е.. Здесьdr - есть проекция элементарного перемещения dl заряда на направление силовой линии,- есть малая разность потенциалов двух близко расположенных точек поля. Приравняем правые части равенств и сократим наq0 . Получаем соотношения ,. Отсюда.

Рис.1.13. Эквипотенциа­льные поверхности (сплошные) и силовые линии (пунктирные) поля точечного поло­жительного заряда.

Последнее соотношение представляет связь ос­новных характеристик электро­статического поля Е и . Здесь - быстрота изменения потенциала в направле­нии силовой линии. Знак ми­нус указывает на то, что векторнаправлен в сторону убывания потенциала. Поскольку, можно записать проекции векторана координатные оси:. Отсюда следует, что. Выраже­ние, стоящее в скобках, называется градиентом скаляра и обозначается как grad.

Напряженность электростатического поля равна гра­диенту потенциала, взя­тому с обратным знаком .

Для графического изображения распределения потенциала электростатичес­кого поля пользуются эквипотенциальными поверхностями - поверхностями, потен­циал всех точек которых одинаков. Потенциал поля одиночного точечного заряда . Эквипотенциальные поверх­нос­ти в данном случае есть концентрические сферы с центром в точке расположе­ния за­рядаq (рис.1.13). Эквипотенциальных поверхностей можно провести бесконеч­ное множество, однако принято чертить их с густотой, пропорциональной величине Е.

1.8 Электроемкость, плоский конденсатор.

Электроемкость.

Рассмотрим уединенный проводник — проводник, удаленный от других тел и зарядов . Из опыта следует, что разные проводники, будучи одинаково заряженными, имеют разные потенциалы.

Физическая величина C , равная отношению заряда проводника q к его потенциалу ϕ, называется электрической емкостью этого проводника.

Электроемкость уединенного проводника численно равна заряду, который нужно сообщить этому проводнику для того, чтобы изменить его потенциал на единицу.

Она зависит от формы и размеров проводника и от диэлектрических свойств окружающей среды. Емкости геометрически подобных проводников пропорциональны их линейным размерам.

Пример: Рассмотрим уединенный шар радиуса R, находящийся в однородной среде с диэлектрической проницаемостью . Ранее было получено, что потенциал шара ра­вен . Тогда емкость шара, т.е. зависит только от его ра­диуса.

Единица электроемкости фарад (Ф): емкость такого уединенного проводника, потенциал которого изменяется на 1В при сообщении ему заряда 1Кл. Емкостью 1Ф обладает шар с радиусом R = 9 ⋅106 км. Емкость Земли 0,7мФ.

Взаимная электроемкость. Конденсаторы

Пусть вблизи заряженного проводника А нахо­дятся незаряженные проводни­ки или диэлектрики. Под действием поля проводника А в телах 1 и 2 возни­кают индуцированные (если 1 и 2 проводники) или свя­занные (если диэлектрики) заряды, причем ближе к А будут располагаться заряды противоположного знака (рис.1.25). Индуцированные (или связанные) заряды соз­дают свое поле противоположного на­правления, чем ослабляют поле проводника А, уменьшая его потенциал и увеличи­вая его электроемкость.

Рис.1.25. Взаимное влияние проводников.

На практике существует потребность в устройствах, которые при относитель­но небольшом потенциале накапливали (конденсировали) бы на себе заметные по вели­чине заряды. В основу таких устройств, называемых конденсаторами, поло­жен факт, что емкость проводника возрастает при приближении к нему других тел. Простейший плоский конденсатор состоит из двух близко расположенных про­водников, заряженных равными по величине и противоположными по знаку заряда­ми. Образующие данную систему проводники называются обкладка­ми.

Для того, чтобы поле, создаваемое заряженны­ми обкладками, было полностью сосредоточено внутри конденсатора, обкладки должны быть в виде двух близко рас­положенных пластин, или коаксиаль­ных цилиндров, или концентрических сфер. Со­ответ­ственно конденсаторы называются плоскими, цилиндрическими или сфериче­скими.

Разность потенциалов между обкладками пропорциональна абсолютной вели­чине заряда обкладки. Поэтому отношение есть величина постоянная для конкретного кон­денсатора. Она обозначаетсяС и называется взаимной электроемкостью провод­ников или емкостью конденсатора. Емкость конденсатора численно равна заряду, который нужно перенести с одной обкладки конденсатора на другую, чтобы изме­нить разность их потенциалов на единицу.

Разность потенциалов плоского конденсатора равна , гдеповерхностная плотность заряда обкладки.S - площадь обкладки конденса­тора.. Отсюда емкость плоского конденсатора . Из этой формулы следует, чтоС плоского конденсатора зави­сит от его геометрических размеров, т.е. от S и d, и диэлектри­ческой проницаемости диэлектрика, заполняющего межплоско­стное пространство. Применение в качестве прослойки сегнетоэлектриков значительно увеличива­ет емкость конденсатора, т.к.  у них достигает очень больших значений. В очень сильных полях (порядка Епр107 В/м) происходит разруше­ние диэлектрика или «пробой», он перестает быть изо­ля­тором и становится проводником. Это «пробивное напряжение» зависит от формы обкладок, свойств диэлектрика и его толщины.

Для получения устройств различной электроемкости конденсаторы соединяют парал­лельно и после­довательно.

Параллельное соединение конденсаторов (Рис. 1. 26). В данном случае, так как соединенные провода-проводники имеют один и тот же потенциал, то разность потенциалов на обкладках всех конденсаторов оди­накова и равна . Заряды конденсаторов будут

, … , .

Рис.1.26.

Заряд, запасенный всей батареей .

Отсюда видно, что полная емкость системы из параллельно соединенных конденсаторов равнасумме емкостей всех конденсаторов.

Последовательное соединение конденсаторов (Рис. 1. 27). В данном случае, вследствие электростатической индукции, заряды на всех обкладок q будут равны по мо­дулю, а общая разность потенциалов складывается из разностей на отдельных конденсаторах . Так как, то. Отсюда.

Рис.1.27. Последовательное соеди­нение конденса­то­ров.

При последовательном сое­динении конденсаторов обратная величина результирующей емкости равна сумме обратных величин емкостей всех конденсаторов.

1.9 Энергия плоского конденсатора, энергия электростатического поля.

Энергия заряженного проводника численно равна работе, которую должны со­вершить внешние силы для его зарядки W=A. При перенесении заряда dq из бесконечности на проводник совершается ра­бота dA против сил электростатического поля (по преодолению кулоновских сил отталки­вания между одноименными зарядами) : dA=dq=Cd.

Чтобы зарядить тело от нулевого потенциала до потенциала , потребуется ра­бота . Энергия заряженного проводника равна той работе, которую надо совершить, чтобы зарядить его:.

Выражение принято называтьсобственной энергией заряженного про­водника.

Увеличение потенциала  проводника при его зарядке сопровождается усиле­нием электростатического поля, возрастает напряженность поля . Естественно предположить, что собственная энергия заряженного проводника есть энергия его электростатического поля. Проверим это предположение на примере однородного поля плоского конденсатора. Повторяя ход вышеприведенного расчета, нетрудно получить энергию заряженного плоского конденсатора,

где  - разность потенциалов его обкладок. Подставим в эту формулу выражения для емкости плоского конденсатора и разности потенциалов между обкладками. Тогда для энергии получим, гдеV=Sd - объем электростатического поля между обкладками конденсатора.

Отсюда следует, что собственная энергия заряженного плоского конденсатора пропорциональна V объему его поля и на­пря­женности . Следовательно, необходимо считать, что электростатическое поле обладает энергией. Объемная плотность энергии электрического поля или энергия единицы объема равна,.

1.10 Проводники и диэлектрики во внешнем электростатическом поле.

Термин «диэлектрик» впервые был введен М.Фарадеем. К диэлектрикам отно­сятся, в первую очередь, электроизолирующие материалы. Однако, многие полупро­водники тоже обладают диэлектрическими свойствами. Электроизолирующие мате­риалы препятствуют рассеянию в пространстве энергии электрического тока. Они иг­рают решающую роль в конструировании электрических приборов, аппаратов, линий передачи электроэнергии. Это приводит к необходимости детального изуче­ния про­цессов, происходящих в диэлектрике под воздействием электрического поля: поляри­зации, проводимости, электрической прочности и др.

Изолирующими материалами могут быть газы, жидкости и твердые тела. Число газообразных диэлектриков невелико и наибольшее значение из них имеет воздух. Среди жидких диэлектриков главное место по масштабу применения при­надлежит трансформаторному маслу, получаемому переработкой нефти. Группа твердых изо­ляторов самая многочисленная - это смолы (искусственные и натураль­ные), растите­льные волокнистые материалы ( из которых вырабатываются ткани, картон, бумага), керамика, искусственные синтетические материалы.

Сегнетоэлектрики.

Сегнетоэлектриками называются кристаллические диэлектрики, у которых в отсутствие внешнего электрического поля возникает самопроизвольная ориентация дипольных электрических моментов составляющих его частиц.

Примеры : сегнетова соль NaKC4H4O6·4H2O; титанат бария BaTiO3

Сегнетоэлектрики состоят из доменов — областей с различными направлениями поляризованности.

Температура, выше которой исчезают сегнетоэлектрические свойстваrточкаr Кюри.

Для сегнетоэлектриков связь между векторами E и P нелинейная и наблюдается явление диэлектрического гистерезиса — сохранения

остаточной поляризованности при снятии внешнего поля.

Пьезоэлектрики кристаллические диэлектрики, в которых при сжатии или растяжении возникает электрическая поляризация — прямой пьезоэффект.

Обратный пьезоэффект — появление механической деформации под действием электрического поля.

Проводники в электростатическом поле.

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться до тех пор, пока не установится равновесное распределение зарядов, при котором

электростатическое поле внутри проводника обращается в нуль = 0 .

Иначе, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии.

Следствия этого (Так как внутри проводника , то):

  • потенциал во всех точках проводника одинаков;

  • поверхность проводника является эквипотенциальной;

  • вектор направлен по нормали к каждой точке поверхности;

  • При помещении нейтрального проводника во внешнее поле свободные заряды (электроны и ионы) начнут перемещаться: положительные — по полю, а отрицательные — против поля (рис.(а)). На одном конце проводника будет избыток положительных зарядов, на другом — отрицательных. Эти заряды называются

индуцированными. Процесс будет продолжаться до тех пор, пока напряженность поля

внутри проводника не станет равной нулю, а линии напряженности вне проводника — перпендикулярными его поверхности (рис.(б)).

если проводнику сообщить некоторый заряд q , то нескомпенсированные заряды располагаются только на поверхности проводника, причем D = σ и

E , где σ — поверхностная плотность зарядов, и ε — диэлектрическая

проницаемость среды, окружающей проводник.

Нейтральный проводник, внесенный в электростатическое поле, разрывает часть линий напряженности; они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных.

Индуцированные заряды распределяются на внешней поверхности проводника. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется

электростатической индукцией.

1.11 Диэлектрическая проницаемость, диэлектрическая восприимчевость, поляризация. Связь между ε и χ.