Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Khues.doc
Скачиваний:
7
Добавлен:
15.03.2015
Размер:
241.25 Кб
Скачать

1). Операционная система— комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений.

Основные функции:

Исполнение запросов программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

Загрузка программ в оперативную память и их выполнение.

Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

Обеспечение пользовательского интерфейса.

Сохранение информации об ошибках системы.

Дополнительные функции: Параллельное или псевдопараллельное выполнение задач (многозадачность).

Эффективное распределение ресурсов вычислительной системы между процессами.

Разграничение доступа различных процессов к ресурсам.

Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

Взаимодействие между процессами: обмен данными, взаимная синхронизация.

Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

Многопользовательский режим работы и разграничение прав доступа (аутентификация, авторизация).

Компоненты операционной системы: Загрузчик, Ядро, Командный процессор, Драйверы устройств, Встроенное программное обеспечение

2). А). Системный вызовв программировании и вычислительной технике — обращение прикладной программы к ядру операционной системы для выполнения какой-либо операции.

Современные операционные системы (ОС) предусматривают разделение времени между выполняющимися вычислительными процессами (многозадачность) и разделение полномочий, препятствующее исполняемым программам обращаться к данным других программ и оборудованию. Ядро ОС исполняется в привилегированном режиме работы процессора. Для выполнения межпроцессной операции или операции, требующей доступа к оборудованию, программа обращается к ядру, которое, в зависимости от полномочий вызывающего процесса, исполняет либо отказывает в исполнении такого вызова.

С точки зрения программиста, системный вызов обычно выглядит как вызов подпрограммы или функции из системной библиотеки. Однако системный вызов, как частный случай вызова такой функции или подпрограммы, следует отличать от более общего обращения к системной библиотеке, поскольку последнее может и не требовать выполнения привилегированных операций.

Б). Прерывание— сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается, и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код.

В зависимости от источника возникновения сигнала прерывания делятся на:

асинхронные, или внешние (аппаратные) — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши. Факт возникновения в системе такого прерывания трактуется как запрос на прерывание (англ. Interrupt request, IRQ);

синхронные, или внутренние — события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение стека, обращение к недопустимым адресам памяти или недопустимый код операции;

программные (частный случай внутреннего прерывания) — инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

Внешние прерывания в зависимости от возможности запрета делятся на:

маскируемые — прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах — сбросом флага IF в регистре флагов);

немаскируемые — обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может быть вызвано сбоем в микросхеме памяти.

До окончания обработки прерывания обычно устанавливается запрет на обработку этого типа прерывания, чтобы процессор не входил в цикл обработки одного прерывания. Приоритизация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные.

Относительное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то это прерывание будет обработано только после завершения текущей процедуры обработки прерывания.

Абсолютное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания вытесняется, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению вытесненной процедуры обработки прерывания.

Вектор прерывания — закреплённый за устройством номер, который идентифицирует соответствующий обработчик прерываний. Векторы прерываний объединяются в таблицу векторов прерываний, содержащую адреса обработчиков прерываний. Местоположение таблицы зависит от типа и режима работы процессора.

В). Исключительная ситуация- ситуация, в результате которой генерируется ошибка, и выполнение программы прерывается. (Например, деление на ноль)

Обработка исключи́тельных ситуаций— механизм языков программирования, предназначенный для описания реакции программы на ошибки времени выполнения и другие возможные проблемы (исключения), которые могут возникнуть при выполнении программы и приводят к невозможности (бессмысленности) дальнейшей отработки программой её базового алгоритма.

Исключительные ситуации, возникающие при работе программы, можно разделить на два основных типа: синхронные и асинхронные, принципы реакции на которые существенно различаются.

Синхронныеисключения могут возникнуть только в определённых, заранее известных точках программы. Так, ошибка чтения файла или коммуникационного канала, нехватка памяти — типичные синхронные исключения, так как возникают они только в операции чтения из файла или из канала или в операции выделения памяти соответственно.

Асинхронныеисключения могут возникать в любой момент времени и не зависят от того, какую конкретно инструкцию программы выполняет система. Типичные примеры таких исключений: аварийный отказ питания или поступление новых данных.

В). Файл — именованная область данных на носителе информации.

Типы файлов:

«Обыкновенный файл»— файл, позволяющий операции чтения, записи, перемещения внутри файла

Каталог или директория— файл, содержащий записи о входящих в него файлах. Каталоги могут содержать записи о других каталогах, образуя древовидную структуру.

Жёсткая ссылка— в общем случае, одна и та же область информации может иметь несколько имён. Такие имена называют жёсткими ссылками (хардлинками). После создания хардлинка сказать где «настоящий» файл, а где хардлинк невозможно, так как имена равноправны. Сама область данных существует до тех пор, пока существует хотя бы одно из имён. Хардлинки возможны только на одном физическом носителе.

Символьная ссылка— файл, содержащий в себе ссылку на другой файл или директорию. Может ссылаться на любой элемент файловой системы, в том числе, и расположенный на другом физическом носителе.

Г).Процесс — команда, которая выполняется в текущий момент. Компьютерная программа сама по себе это только пассивная совокупность инструкций, в то время как процесс — это непосредственное выполнение этих инструкций.

3).Хранение данных

Для устройств обработки данных, к которым относится и компьютер, большое значение имеет организация метода хранения информации на внешних носителях, позволяющих сохранять данные энергонезависимо. Способ хранения данных на таких носителях должен обеспечивать их целостность, доступность и защищенность. В настоящее время наиболее популярными внешними носителями являются диски. На одном диске помещается информация, объем которой может измеряться триллионами байтов. В этом случае эффективный способхраненияособенно важен. Разработчики программного обеспечения предложили оригинальный способ организации хранения информации: в виде файлов.

Под файлом понимается именованная область носителя, содержащая данные произвольной длины и воспринимаемая компьютерной системой как единое целое.Имя файла имеет особое значение, оно сопоставлено адресу размещения файла на носителе. Носитель имеет служебную таблицу, в каждой строке которой записано имя файла и адрес его местонахождения на носителе. Эта таблица используется специальной программой, которая называетсяфайловой сиетемой. Для доступа к данным она получает имя файла, находит по таблице его местоположение на носителе и возвращает содержимое файла. Как правило, процесс обработки информации сопровождается ее последующим сохранением. Для этого компьютерная программа объединяет какой-либо блок обрабатываемых данных в единое целое, снабжает его именем и передает файловой системе для записи на внешний носитель.

Драйвер является компьютерной программой, которая позволяет компьютерным программа более высокого уровня взаимодействовать с аппаратным устройством.

Драйвер обычно связывается с устройством через шины компьютера или сообщения подсистемы. Когда вызывающая программа вызывает драйвер, то он выдает команды на устройство. Как только устройство отправляет данные на драйвер, он может использовать процессы в запускаемой программе. Драйвера зависят от оборудования и операционной системы, а также от конкретных условий. Как правило, они обеспечивают прерывание обработки, необходимое для любого зависящего от времени аппаратного интерфейса.

Драйвер устройства упрощает программирование, выступая в роли переводчика между устройством оборудования и приложением операционных систем , которые используют его. Программисты могут создавать на более высоком уровне коды приложения, независимо от аппаратного устройства.

Некоторые драйвера устройств устанавливаются с установкой операционной системы, но в основном все комплектующие комплектуются диском с драйверами сразу под несколько операционных систем, особенно драйвера внешнего устройства.

Раздел— часть долговременной памяти накопителя данных (жёсткого диска, SSD, USB-накопителя), логически выделенная для удобства работы, и состоящая из смежных блоков.

Выделение разделов обычно практикуется на внутренних загрузочных дисках компьютера, т.к. основной его целью является отделение файлов операционной системы от файлов пользователя и от файлов других операционных систем, находящихся на том же физическом носителе. Кроме того, существуют USB-накопители, укомплектованные специальным ПО, которое позволяет разбить память на два раздела, один из которых будет защищён паролем.

4). Файловая система — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имен файлов и (каталогов), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.

Основные функциилюбой файловой системы нацелены на решение следующих задач:

именование файлов;

программный интерфейс работы с файлами для приложений;

отображения логической модели файловой системы на физическую организацию хранилища данных;

организация устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;

содержание параметров файла, необходимых для правильного его взаимодействия с другими объектами системы (ядро, приложения и пр.).

В многопользовательских системах появляется ещё одна задача: защита файлов одного пользователя от несанкционированного доступа другого пользователя, а также обеспечение совместной работы с файлами, к примеру, при открытии файла одним из пользователей, для других этот же файл временно будет доступен в режиме «только чтение».

Дисковые файловыесистемы обычно являются поток-ориентированными. Файлы в поток-ориентированных файловых системах представляются последовательностью битов, часто предоставляющие такие функции, как чтение, запись, изменение данных и произвольный доступ.

В запись-ориентированныхфайловых системах файлы хранятся как коллекция записей. Такие файловые системы ассоциируются, прежде всего, со старыми мейнфреймами и операционными системами для миникомпьютеров. Программы считывают и записывают целыми записями, вместо байт, записанных, в определенном порядке.

Физическая организация файла (ФОФ) – это способ размещения файла на диске. Основные критерии эффективности физической организации файлов:

Скорость доступа к данным.

Объем адресной информации файла.

Степень фрагментированнности дискового пространства.

Максимально возможно размер файла.

Существует несколько способов физической организации файла. Непрерывное размещение– это простейший вариант ФОФ, при котором файлу предоставляется последовательность кластеров диска, образующих непрерывный участок дисковой памяти.

Размещение файла в виде связанного списка кластеров дисковой памяти.

При таком способе в начале каждого кластера содержится указатель на следующий кластер

Данный способ является модификацией предыдущего метода. Файлу также выделяется память в виде связанного списка кластеров. Номер первого кластера запоминается в записи каталога, где хранятся характеристики этого файла. Остальная адресная информация отделена от кластеров файла. С каждым кластером диска связан индекс. Индексы располагаются в отдельной области диска – в файловых системах FAT это таблица.

5). FAT— классическая архитектура файловой системы, которая из-за своей простоты всё ещё широко используется для флеш-накопителей. Используется в дискетах, и некоторых других носителях информации. Ранее использовалась и на жестких дисках.

FAT 32

На данный момент времени эта файловая система является самой распространенной, хотя и сдает постепенно свои позиции после выхода Windows XP. Поддерживают FAT 32 все операционные системы семейства Windows начиная с Windows 95 OSR2. Итак, FAT 32 (File Allocation Table) - это электронная таблица размещения файлов. Находиться она практически в самом начале диска. Структура диска FAT:

1. загрузочные секторы главного и дополнительного разделов;

2. загрузочный сектор логического диска;

3. корневой каталог;

4. область данных;

5. цилиндр для выполнения диагностических операций чтения/записи;

Основное преимущество FAT 32 перед FAT 16 заключается в том, что вместо 16 разрядных записей используются 32х разрядные. Это в свою очередь увеличивает количество кластеров в разделе до 268 435 456 (в FAT - 65 536). При использовании FAT 32 размер тома равен 2 Tb, а размер одного файла может достигать 4 Gb. Заметное отличие FAT 32 от предшествующих таблиц заключается в том, что корневой каталог не занимает фиксированного места на диске и может иметь любой размер.

Размер кластера при использовании FAT 32 в разделе размером 2 Gb с 5 000 файлами равен 4 Kb ( в FAT 16 - 32 Kb), в таблице будет использоваться до 524 288 записей. При этом сама таблица будет весить порядка 2 Мb.

6). Физический (аппаратный) интерфейс — способ взаимодействия физических устройств. Чаще всего речь идёт о компьютерных портах.

Сетевой интерфейс

Сетевой шлюз — устройство, соединяющее локальную сеть с более крупной, например, Интернетом

Шина (компьютер)

Для виртуальных (программных) устройств существуют следующие интерфейсы (Программный интерфейс):

Интерфейс функции

Интерфейс программирования приложений (API) — набор стандартных библиотечных методов, которые программист может использовать для доступа к функциональности другой программы.

Удалённый вызов процедур

COM-интерфейс

Интерфейс объектно-ориентированного программирования

Прерывание— сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается, и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код.

В зависимости от источника возникновения сигнала прерывания делятся на:

асинхронные, или внешние (аппаратные) — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши. Факт возникновения в системе такого прерывания трактуется как запрос на прерывание (англ. Interrupt request, IRQ);

синхронные, или внутренние — события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение стека, обращение к недопустимым адресам памяти или недопустимый код операции;

программные (частный случай внутреннего прерывания) — инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

Внешние прерывания в зависимости от возможности запрета делятся на:

маскируемые — прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах — сбросом флага IF в регистре флагов);

немаскируемые — обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может быть вызвано сбоем в микросхеме памяти.

До окончания обработки прерывания обычно устанавливается запрет на обработку этого типа прерывания, чтобы процессор не входил в цикл обработки одного прерывания. Приоритизация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные.

Относительное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то это прерывание будет обработано только после завершения текущей процедуры обработки прерывания.

Абсолютное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания вытесняется, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению вытесненной процедуры обработки прерывания.

Вектор прерывания — закреплённый за устройством номер, который идентифицирует соответствующий обработчик прерываний. Векторы прерываний объединяются в таблицу векторов прерываний, содержащую адреса обработчиков прерываний. Местоположение таблицы зависит от типа и режима работы процессора.

 Функции прерываний:

1.       определение наиболее приоритетного незамаскированного запроса на прерывание (если одновременно поступило несколько запросов);

2.       определение типа выбранного запроса;

3.       сохранение текущего состояния счетчика команд и регистра флагов;

4.       определение адреса обработчика прерывания по типу прерывания и передача управления первой команде этого обработчика;

5.       выполнение программы - обработчика прерывания;

6.       восстановление сохраненных значений счетчика команд и регистра флагов прерванной программы;

7.       продолжение выполнения прерванной программы.

7). Передача информации с периферийного устройства в ядро ЭВМ называется операцией ввода, а передача из ядра ЭВМ в периферийное устройство - операцией вывода. Связь устройств ЭВМ друг с другом осуществляется с помощью средств сопряжения - интерфейсов.

Большинство устройств вводы вывода состоит из 2-х независимых частей:

  1. микропроцессора, управляющего работой этого устройства.

  2. механическая или электрическая часть, обеспечивающая ввод или вывод информации.

Микропроцессор, управляющий работой устройства называется контроллером устройства.

Для различных устройств он может составлять либо одно целое с устройством, либо располагаться независимо от устройства.

Каналы DMA (Direct Memory Access)- прямой доступ к памяти. Используется любыми высокоскоростными устройствами связи, которые должны с высокой скоростью обмениваться информацией с материнской платой. Пример: контроллер жесткого диска будет использовать DMA, а контроллер гибкого- нет. Иногда каналы DMA могут разделиться, если устройства не будут использовать их одновременно. Архитектура РС система АТ поддерживает 7 каналов DMA, 6 из которых подключены к разъемам расширения. Канал DMA используют для подключения к микропроцессору каналов 0-

DMA- позволяет без использования ИП пересылать данные из контроллера ввода вывода непосредственно в оперативную память и наоборот, из оперативной памяти в контроллер ввода вывода.

Драйвер— компьютерная программа, с помощью которой другие программы (операционная система) получают доступ к аппаратному обеспечению некоторого устройства. Обычно с операционными системами поставляются драйверы для ключевых компонентов аппаратного обеспечения, без которых система не сможет работать. Однако для некоторых устройств (таких, как видеокарта или принтер) могут потребоваться специальные драйверы, обычно предоставляемые производителем устройства.

Динамическая загрузка драйверов- Способность системы автоматически загружать из оперативной памяти требуемый драйвер.

При большом разнообразии устройств ввода-вывода, обладающих существенно различными характеристиками, иерархическая структура подсистемы ввода-вывода позволяет соблюсти баланс между двумя противоречивыми требованиями. С одной стороны, необходимо учесть все особенности каждого устройства, а с другой стороны – обеспечить единое логическое представление и унифицированный интерфейс для устройств всех типов. При этом нижние слои подсистемы ввода-вывода должны включать индивидуальные драйверы, написанные для конкретно физических устройств, а верхние слои должны обобщать процедуры управления этими устройствами, предоставляя общий интерфейс если не для всех устройств, то, по крайней мере, для группы устройств, обладающих некоторыми общими характеристиками, например, для принтеров определенного производителя или для всех матричных принтеров и т.п.

Многослойность структуры, безусловно, облегчает решение большинства перечисленных в предыдущем разделе задач подсистемы ввода-вывода.

8). Большинство операций ввода-вывода приложений являютсясинхронными, т. е. приложение ждет, когда устройство выполнит передачу данных и вернет код статуса по завершении операции ввода-вывода. После этого программа продолжает работу и немедленно использует полученные данные. Перед возвратом управления они должны завершить операцию ввода-вывода.

Асинхронный ввод-вывод позволяет приложению выдать запрос на ввод-вывод и продолжить выполнение, не дожидаясь передачи данных устройством. Этот тип ввода-вывода увеличивает эффективность работы приложения, позволяя заниматься другими задачами, пока выполняется операция ввода-вывода. Инициировав операцию асинхронного ввода-вывода, поток должен соблюдать осторожность и не обращаться к запрошенным данным до их получения от устройства. Следовательно, поток должен синхронизировать свое выполнение с завершением обработки запроса на ввод-вывод, отслеживая описатель синхронизирующего объекта (которым может быть событие, порт завершения ввода-вывода или сам объект «файл»), который по окончании ввода-вывода перейдет в свободное состояние.

Независимо от типа запроса операции ввода-вывода, инициированные драйвером в интересах приложения, выполняются асинхронно, т. е. после выдачи запроса драйвер устройства возвращает управление подсистеме ввода-вывода. A когда она вернет управление приложению, зависит от типа запроса.

буфер— это область памяти, используемая для временного хранения данных при вводе или выводе. Обмен данными (ввод и вывод) может происходить как с внешними устройствами, так и с процессами в пределах компьютера. Буферы могут быть реализованы в аппаратном или программном обеспечении, но подавляющее большинство буферов реализуется в программном обеспечении. Буферы используются когда существует разница между скоростью получения данных и скоростью их обработки, или в случае когда эти скорости переменны, например, при буферизации печати.

Кэш— промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше осуществляется быстрее, чем выборка исходных данных из более медленной памяти или удаленного источника, однако её объем существенно ограничен по сравнению с хранилищем исходных данных.

Менеджер ввода-вывода формирует каркас для управления устройствами ввода-вывода и предоставляет общие службы ввода-вывода. Он предоставляет остальной части системы независимый от устройств ввод-вывод, вызывая для выполнения физического ввода-вывода соответствующий драйвер. Файловые системы формально являются драйверами устройств под управлением менеджера ввода-вывода. Существует два драйвера для файловых систем FAT и NTFS, независимые друг от друга и управляющие различными разделами диска. Все файловые системы FAT управляются одним драйвером.

9). Оболочка операционной системы— интерпретатор команд операционной системы, обеспечивающий интерфейс для взаимодействия пользователя с функциями системы.

В общем случае, различают оболочки с двумя типами интерфейса для взаимодействия с пользователем: текстовый пользовательский интерфейс (TUI) и графический пользовательский интерфейс (GUI).

Функции: Командный интерпретатор исполняет команды своего языка, заданные в командной строке или поступающие из стандартного ввода или указанного файла.

В качестве команд интерпретируются вызовы системных или прикладных утилит, а также управляющие конструкции. Кроме того, оболочка отвечает за раскрытие шаблонов имен файлов и за перенаправление и связывание ввода-вывода утилит.

В совокупности с набором утилит, оболочка представляет собой операционную среду, язык программирования и средство решения как системных, так и некоторых прикладных задач, в особенности, автоматизации часто выполняемых последовательностей команд.

Пример: Norton Commander для DOS.

Для большего удобства работы с файлами и каталогами, а именно, для их поиска, просмотра, копирования или удаления разработаны специальные программы, называемые "файловыми оболочками". Программы-оболочки автоматизируют процесс отдачи операционной системе команд, таких, например, как смена текущего каталога, копирование, удаление, перемещение и запуск файлов. Файловые оболочки предоставляют простые механизмы для выбора диска, наглядно показывают структуру вложенности его каталогов, помогают запускать сервисные программы и многое другое.

10). Для настройкии конфигурирования операционной системы Windows существует специальный инструмент, называемый «Панелью управления». В нем собраны средства для изменения основных параметров компьютера, таких как: настройки оформления экрана и окон приложений, установки и удаления программ, управления системой безопасности, настройки.

Консоль MMC(Microsoft Management Console) — место для хранения и отображения средств администрирования, созданных корпорацией Майкрософт и другими поставщиками программного обеспечения. Эти средства называются оснастками и служат для управления оборудованием, программным обеспечением и сетевыми компонентами Windows. Некоторые средства, расположенные в папке «Администрирование», например «Управление компьютером», являются оснастками MMC отдельных компонентов системы и много другого.

Реестр Windows, или системный реестр — иерархически построенная база данных параметров и настроек в большинстве операционных систем Microsoft Windows.

Реестр содержит информацию и настройки для аппаратного обеспечения, программного обеспечения, профилей пользователей, предустановки. Большинство изменений в Панели управления, ассоциации файлов, системные политики, список установленного ПО фиксируются в реестре.

Реестр Windows был введён для упорядочения информации.

Утилиты:

Утилиты командной строки – специальные программы, помогающие выполнять действия по управлению операционной системой без использования пользовательского интерфейса.

Команда Pingявляется одной из простейших команд, которой может пользоваться любой пользователь, и все же это также является невероятно мощным инструментом для диагностики неисправностей.

При использовании утилиты tracert(трассировка) посылается три пакета и мы можем отследить весь путь, который пакеты проходят от нашей машины до запрашиваемой. По умолчанию предусмотрено 30 прыжков.

Командная оболочка UNIX (англ. Unix shell, часто просто «шелл» или «sh») — командный интерпретатор, используемый в операционных системах семейства UNIX, в котором пользователь может либо давать команды операционной системе по отдельности, либо запускать скрипты, состоящие из списка команд.

sh является удобным и часто используемым интерпретируемым языком программирования. Он содержит стандартные конструкции для циклов, ветвления, объявления функций и т. п. Данный язык часто используется в UNIX-подобных системах при создании различных сценариев (скриптов) работы, в частности, сценариев автоматического конфигурирования исходных кодов программ перед их компиляцией. Отличительная особенность языка sh — многие операции, которые в традиционных языках программирования являются встроенными, выполняются с помощью вызова внешних программ.

11).

12). UNIX — семейство переносимых, многозадачных и многопользовательских операционных систем.

Система делится на две части. Одну часть составляют программы и сервисные функции, то, что делает операционную среду UNIX такой популярной; эта часть легко доступна пользователям, она включает такие программы, как командный процессор, обмен сообщениями, пакеты обработки текстов и системы обработки исходных текстов программ. Другая часть включает в себя собственно операционную систему, поддерживающую эти программы и функции. В этой работе дается детальное описание собственно операционной системы. Основное внимание концентрируется на описании системы UNIX версии V, распространением которой занимается корпорация AT&T. Приводятся основные информационные структуры и алгоритмы, используемые в операционной системе и в конечном итоге создающие условия для функционирования стандартного пользовательского интерфейса.

Файловая система UNIX характеризуется: иерархической структурой, согласованной обработкой массивов данных, возможностью создания и удаления файлов, динамическим расширением файлов, защитой информации в файлах, трактовкой периферийных устройств (таких как терминалы и ленточные ус- тройства) как файлов.

Файловая система организована в виде дерева с одной исходной вершиной, которая называется корнем; каждая вершина в древовидной структуре файловой системы, кроме листьев, является каталогом файлов, а файлы, соответствующие дочерним вершинам, являются либо каталогами, либо обычными файлами, либо файлами устройств

Программы, выполняемые под управлением системы UNIX, не содержат никакой информации относительно внутреннего формата, в котором ядро хранит файлы данных, данные в программах представляются как бесформатный поток байтов.

ОС UNIX имеет следующие основные характеристики:

переносимость;

вытесняющая многозадачность на основе процессов, работающих в изолированных адресных пространствах в виртуальной памяти;

поддержка одновременной работы многих пользователей;

поддержка асинхронных процессов;

иерархическая файловая система;

поддержка независимых от устройств операций ввода-вывода (через специальные файлы устройств);

стандартный интерфейс для программ (программные каналы, IPC) и пользователей (командный интерпретатор, не входящий в ядро ОС);

встроенные средства учета использования системы.

13). NTFS— стандартная файловая система для семейства операционных систем Microsoft Windows NT. NTFS поддерживает систему метаданных и использует специализированные структуры данных для хранения информации о файлах для улучшения производительности, надёжности и эффективности использования дискового пространства. NTFS хранит информацию о файлах в главной файловой таблице — Master File Table (MFT). NTFS имеет встроенные возможности разграничения доступа к данным для различных пользователей и групп пользователей (списки контроля доступа — Access Control Lists (ACL)), а также назначать квоты (ограничения на максимальный объём дискового пространства, занимаемый теми или иными пользователями). NTFS использует систему журналирования USN для повышения надёжности файловой системы.

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего. Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается... Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности (они очень важны) хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, "зацепившись" за самую основу - за первый элемент MFT.

14). Стандартные права– это такие права, которые позволяют контролировать широкий спектр отдельных прав. Самое популярное и имеющее печальную известность право - Full Control (Полный доступ).Это то, что каждый хочет, но в действительности лишь немногие должны иметь. Полный доступ позволяет пользователю, для которого оно назначено, делать все что угодно с объектом.

Расширенные права– это специальные права, которые сгруппированы вместе для создания стандартных прав. Т.к. расширенные права используются в сочетаниях для создания стандартных прав, в целом их гораздо больше.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]